skip to main content


This content will become publicly available on August 31, 2024

Title: Climate variability hypothesis is partially supported in thermal limits of juvenile Northwest Atlantic coastal fishes
Abstract

As ocean warming continues to impact marine species globally, there is a need to understand the mechanisms underlying shifts in abundance and distribution. There is growing evidence that upper and lower temperature tolerances rather than mean preferences explain range shifts, but the full thermal niche is unknown for many marine species and observational data are often ill‐suited to estimate the upper and lower thermal tolerances. We quantified critical thermal maximum (CTmax) and critical thermal minimum (CTmin) using standard methods to quantify temperature limits and thermal ranges of 14 economically and ecologically important juvenile fish species on the US Atlantic coast. We then tested the climate variability hypothesis (CVH), which states that higher‐latitude species should have a wider temperature tolerance due to higher climatic variability closer to the poles. Our findings generally support the CVH in the juvenile fishes that we evaluated. However, low‐latitude species were not uniformly stenothermal. Rather, species with median occurrences across a wide range of latitudes had wide temperature tolerances, but only the tropical species we tested had more narrow ranges. These findings suggest that quantifying temperature tolerances may be used to predict which low‐latitude species are most likely to shift in response to warming water and those that may be more sensitive to climate change in this region.

 
more » « less
NSF-PAR ID:
10483459
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Fish Biology
Volume:
103
Issue:
6
ISSN:
0022-1112
Format(s):
Medium: X Size: p. 1452-1462
Size(s):
["p. 1452-1462"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.

     
    more » « less
  2. Abstract

    Analyses of heat tolerance in insects often suggest that this trait is relatively invariant, leading to the use of fixed thermal maxima in models predicting future distribution of species in a warming world. Seasonal environments expose populations to a wide annual temperature variation. To evaluate the simplifying assumption of invariant thermal maxima, we quantified heat tolerance of 26 ant species across three seasons that vary two‐fold in mean temperature. Our ultimate goal was to test the hypothesis that heat tolerance tracks monthly temperature. Ant foragers tested at the end of the summer, in September, had higher average critical thermal maximum (CTmax) compared to those in March and December. Four out of five seasonal generalists, species actively foraging in all three focal months, had, on average, 6°C higher CTmaxin September. The invasive fire ant,Solenopsis invicta, was among the thermally plastic species, but the native thermal specialists still maintained higher CTmaxthanS. invicta. Our study shows that heat tolerance can be plastic, and this should be considered when examining species‐level adaptations. Moreover, the plasticity of thermal traits, while potentially costly, may also generate a competitive advantage over species with fixed traits and promote resilience to climate change.

     
    more » « less
  3. Abstract

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.

     
    more » « less
  4. Abstract

    The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming.

    Abstract in Spanish is available with online material.

     
    more » « less
  5. Abstract

    Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

     
    more » « less