skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Cost Savings from Truck Caravanning
Truck platooning and related autonomous vehicle coordination concepts have been proposed as sustainable ways to increase profits and improve service quality. Recently the concept of truck caravanning, a hybrid truck platooning with only one truck driver required per platoon, has been proposed in the literature. This paper describes the research effort in developing a model that can estimate the cost savings of truck caravanning. The motivation of the proposed model is to investigate if substantial monetary savings exist to justify the initial capital investment (both in equipment and infrastructure) required for the implementation of the truck caravanning concept. A linear programming model is developed and used to evaluate different size networks. Results from numerical experiments indicate that a caravan size of four trucks or greater is needed for significant cost savings to be achieved and that driver compensation is the most critical factor dictating profitability.  more » « less
Award ID(s):
2209829
PAR ID:
10483469
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2677
Issue:
2
ISSN:
0361-1981
Page Range / eLocation ID:
78 to 97
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Truck platooning enabled by connected automated vehicle (CAV) technology has been demonstrated to effectively reduce fuel consumption for trucks in a platoon. However, given the limited number of trucks in the traffic stream, it remains questionable how great an energy saving it may yield for a practical freight system if we only rely on ad-hoc platooning. Assuming the presence of a central platooning coordinator, this paper is offered to substantiate truck platooning benefits in fuel economy produced by exploiting platooning opportunities arising from the United States’ domestic truck demands on its highway freight network. An integer programming model is utilized to schedule trucks’ itineraries to facilitate the formation of platoons at platoonable locations to maximize energy savings. A simplification of the real freight network and an approximation algorithm are used to solve the model efficiently. By analyzing the numerical results obtained, this study quantifies the importance of scheduled platooning in improving trucks’ fuel economy. Furthermore, the allowable platoon size, schedule flexibility, and fuel efficiency all play a crucial role in energy savings. Specifically, by assuming that following vehicles in a platoon obtain a 10% energy reduction, an average energy reduction of 8.48% per truck can be achieved for the overall network if the maximum platoon size is seven, and the schedule flexibility is 30 min. The cost–benefit analysis provided at the end suggests that the energy-saving benefits can offset the investment cost in truck platooning technology. 
    more » « less
  2. California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring cost optimality and reliable power system operation. In particular, we examine the potential cost savings of electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium- and heavy-duty trucks in California. 
    more » « less
  3. Traffic congestion has a negative economic and environmental impact. Traffic conditions become even worse in areas with high volume of trucks. In this paper, we propose a coordinated pricing-and-routing scheme for truck drivers to efficiently route trucks into the network and improve the overall traffic conditions. A basic characteristic of our approach is the fact that we provide personalized routing instructions based on drivers’ individual routing preferences. In contrast with previous works that provide personalized routing suggestions, our approach optimizes over a total system-wide cost through a combined pricing-and-routing scheme that satisfies the budget balance on average property and ensures that every truck driver has an incentive to participate in the proposed mechanism by guaranteeing that the expected total utility of a truck driver (including payments) in case he/she decides to participate in the mechanism, is greater than or equal to his/her expected utility in case he/she does not participate. Since estimating a utility function for each individual truck driver is computationally intensive, we first divide the truck drivers into disjoint clusters based on their responses to a small number of binary route choice questions and we subsequently propose to use a learning scheme based on the Maximum Likelihood Estimation (MLE) principle that allows us to learn the parameters of the utility function that describes each cluster. The estimated utilities are then used to calculate a pricing-and-routing scheme with the aforementioned characteristics. Simulation results in the Sioux Falls network demonstrate the efficiency of the proposed pricing-and-routing scheme. 
    more » « less
  4. PurposeElectric trucks and platooning are promising technologies to reduce greenhouse gas emissions in the freight sector. To maximize the benefits of these two technologies, effective coordination of charging and platooning is essential, especially considering insufficient charging stations (CSs), long charging duration and tight freight delivery window for middle-mile electric trucks. Therefore, this paper aims to jointly optimize the scheduling of charging and platooning of electric trucks over the freight transportation network. Design/methodology/approachThis paper proposes a mixed integer linear programming model to minimize the total costs from en-route charging, depot charging, and delivery delay. This also presents scenario analyses to understand the impacts of key features on system costs, including battery capacity, number of charging plugs at CSs, charging speed, availability of alternative paths and platoon energy-saving percentage. To solve the model with a large fleet size, a warm-start-based parameter-tuned solver approach, and hybrid metaheuristics of variable neighborhood search and local branching were implemented and compared based on performance. FindingsThe proposed model was implemented using the freight network in Florida. In a case study with a small fleet size, platoon scheduling reduced 19% of en-route charging cost and 30% of delivery delay cost compared with the case of only charge scheduling. Electric trucks were charged around three times with an average duration of 35 min per session to facilitate platoon scheduling and minimize the total cost. Originality/valuePrevious models optimized charging and platoon scheduling for single routes that cannot be generalized for network level and multiple origin-destination pairs; this study addresses network-level optimization. 
    more » « less
  5. Connected vehicle-based eco-driving applications have emerged as effective tools for improving energy efficiency and environmental sustainability in the transportation system. Previous research mainly focused on vehicle-level or link-level technology development and assessment using real-world field tests or traffic microsimulation models. There is still high uncertainty in understanding and predicting the impact of these connected eco-driving applications when they are implemented on a large scale. In this paper, a computationally efficient and practically feasible methodology is proposed to estimate the potential energy savings from one eco-driving application for heavy-duty trucks named Eco-Approach and Departure (EAD). The proposed methodology enables corridor-level or road network–level energy saving estimates using only road length, speed limit, and travel time at each intersection as inputs. This technique was validated using EAD performance data from traffic microsimulation models of four trucking corridors in Carson, California; the estimates of energy savings using the proposed methodology were around 1% average error. The validated models were subsequently applied to estimate potential energy savings from EAD along truck routes in Carson. The results show that the potential energy savings vary by corridor, ranging from 1% to 25% with an average of 14%. 
    more » « less