Abstract Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer.
more »
« less
Differential impact of two major polychaete guilds on microbial communities in marine sediments: a microcosm study
Even though sediment macrofauna are widespread in the global seafloor, the influence of these fauna on microbial communities that drive sediment biogeochemical cycles remains poorly understood. According to recent field investigations, macrofaunal activities control bacterial and archaeal community structure in surface sediments, but the inferred mechanisms have not been experimentally verified. Here we use laboratory microcosms to investigate how activities of two major polychaete guilds, the lugworms, represented byAbarenicola pacifica, and the clamworms, represented byNereis vexillosa, influence microbial communities in coastal sediments.A. pacificatreatments show >tenfold increases in microbial cell-specific consumption rates of oxygen and nitrate, largely due to the strong ventilation activity ofA. pacifica. While ventilation resulted in clearly elevated percentages of nitrifying archaea (Nitrosopumilusspp.) in surface sediments, it only minorly affected bacterial community composition. By comparison, reworking – mainly by deposit-feeding ofA. pacifica– had a more pronounced impact on microorganismal communities, significantly driving down abundances of Bacteria and Archaea. Within the Bacteria, lineages that have been linked to the degradation of microalgal biomass (e.g., Flavobacteriaceae and Rhodobacteraceae), were especially affected, consistent with the previously reported selective feeding ofA. pacificaon microalgal detritus. In contrast,N. vexillosa, which is not a deposit feeder, did not significantly influence microbial abundances or microbial community structure. This species also only had a relatively minor impact on rates of oxygen and nitrogen cycling, presumably because porewater exchanges during burrow ventilation by this species were mainly restricted to sediments immediately surrounding the burrows. Collectively our analyses demonstrate that macrofauna with distinct bioturbation modes differ greatly in their impacts on microbial community structure and microbial metabolism in marine sediments.
more »
« less
- Award ID(s):
- 1832178
- PAR ID:
- 10483470
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 10
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The surficial hydrothermal sediments of Guaymas Basin harbor complex microbial communities where oxidative and reductive nitrogen, sulfur, and carbon-cycling populations and processes overlap and coexist. Here, we resolve microbial community profiles in hydrothermal sediment cores of Guaymas Basin on a scale of 2 millimeters, using Denaturing Gradient Gel Electrophoresis (DGGE) to visualize the rapid downcore changes among dominant bacteria and archaea. DGGE analysis of bacterial 16S rRNA gene amplicons identified free-living and syntrophic deltaproteobacterial sulfate-reducing bacteria, fermentative Cytophagales, members of the Chloroflexi (Thermoflexia), Aminicenantes, and uncultured sediment clades. The DGGE pattern indicates a gradually changing downcore community structure where small changes on a 2-millimeter scale accumulate to significantly changing populations within the top 4 cm sediment layer. Functional gene DGGE analyses identified anaerobic methane-oxidizing archaea (ANME) based on methyl-coenzyme M reductase genes, and members of the Betaproteobacteria and Thaumarchaeota based on bacterial and archaeal ammonia monooxygenase genes, respectively. The co-existence and overlapping habitat range of aerobic, nitrifying, sulfate-reducing and fermentative bacteria and archaea, including thermophiles, in the surficial sediments is consistent with dynamic redox and thermal gradients that sustain highly complex microbial communities in the hydrothermal sediments of Guaymas Basin.more » « less
-
Brazelton, William J. (Ed.)The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.more » « less
-
Abstract Bloom‐forming gelatinous zooplankton occur circumglobally and significantly influence the structure of pelagic marine food webs and biogeochemical cycling through interactions with microbial communities. During bloom conditions especially, gelatinous zooplankton are keystone taxa that help determine the fate of primary production, nutrient remineralization, and carbon export. Using the pelagic tunicateDolioletta gegenbaurias a model system for gelatinous zooplankton, we carried out a laboratory‐based feeding experiment to investigate the potential ecosystem impacts of doliolid gut microbiomes and microbial communities associated with doliolid faecal pellets and the surrounding seawater. Metabarcoding targeting Bacteria and Archaea 16S rRNA genes/Archaea) and qPCR approaches were used to characterize microbiome assemblages. Comparison between sample types revealed distinct patterns in microbial diversity and biomass that were replicable across experiments. These observations support the hypothesis that through their presence and trophic activity, doliolids influence the structure of pelagic food webs and biogeochemical cycling in subtropical continental shelf systems where tunicate blooms are common. Bacteria associated with starved doliolids (representative of the resident gut microbiome) possessed distinct low‐biomass and low‐diversity microbial assemblages, suggesting that the doliolid microbiome is optimized to support a detrital trophic mode. Bacterial generaPseudoalteromomasandShimiawere the most abundant potential core microbiome taxa, similar to patterns observed in other marine invertebrates. Exploratory bioinformatic analyses of predicted functional genes suggest that doliolids, via their interactions with bacterial communities, may affect important biogeochemical processes including nitrogen, sulphur, and organic matter cycling.more » « less
-
Abstract In recent decades the habitat of North American beaver (Castor canadensis) has expanded from boreal forests into Arctic tundra ecosystems. Beaver ponds in Arctic watersheds are known to alter stream biogeochemistry, which is likely coupled with changes in the activity and composition of microbial communities inhabiting beaver pond sediments. We investigated bacterial, archaeal, and fungal communities in beaver pond sediments along tundra streams in northwestern Alaska (AK), USA and compared them to those of tundra lakes and streams in north‐central Alaska that are unimpacted by beavers.β‐glucosidase activity assays indicated higher cellulose degradation potential in beaver ponds than in unimpacted streams and lakes within a watershed absent of beavers. Beta diversity analyses showed that dominant lineages of bacteria and archaea in beaver ponds differed from those in tundra lakes and streams, but dominant fungal lineages did not differ between these sample types. Beaver pond sediments displayed lower relative abundances of Crenarchaeota and Euryarchaeota archaea and of bacteria from typically anaerobic taxonomic groups, suggesting differences in rates of fermentative organic matter (OM) breakdown, syntrophy, and methane generation. Beaver ponds also displayed low relative abundances of Chytridiomycota (putative non‐symbiotic) fungi and high relative abundances of ectomycorrhizal (plant symbionts) Basidiomycota fungi, suggesting differences in the occurrence of plant and fungi mutualistic interactions. Beaver ponds also featured microbes with taxonomic identities typically associated with the cycling of nitrogen and sulfur compounds in higher relative abundances than tundra lakes and streams. These findings help clarify the microbiological implications of beavers expanding into high latitude regions.more » « less
An official website of the United States government

