skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Herbivory limits success of vegetation restoration globally
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.  more » « less
Award ID(s):
1832178
PAR ID:
10483488
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
382
Issue:
6670
ISSN:
0036-8075
Page Range / eLocation ID:
589 to 594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large and small mammalian herbivores are present in most vegetated areas in the Arctic and often have large impacts on plant community composition and ecosystem functioning. The relative importance of different herbivores and especially how their specific impact on the vegetation varies across the Arctic is however poorly understood.Here, we investigate how large and small herbivores influence vegetation density and plant community composition in four arctic vegetation types in Scandinavia and Alaska. We used a unique set of exclosures, excluding only large (reindeer and muskoxen) or all mammalian herbivores (also voles and lemmings) for at least 20 years.We found that mammalian herbivores in general decreased leaf area index, NDVI, and abundance of vascular plants in all four locations, even though the strength of the effect and which herbivore type caused these effects differed across locations. In three locations, herbivore presence caused contrasting plant communities, but not in the location with lowest productivity. Large herbivores had a negative effect on plant height, whereas small mammalian herbivores increased species diversity by decreasing dominance of the initially dominating plant species. Above‐ or belowground disturbances caused by herbivores were found to play an important role in shaping the vegetation in all locations.Synthesis:Based on these results, we conclude that both small and large mammalian herbivores influence vegetation in Scandinavia and Alaska in a similar way, some of which can mitigate effects of climate change. We also see important differences across locations, but these depend rather on local herbivore and plant community composition than large biogeographical differences among continents. 
    more » « less
  2. Abstract Large mammalian herbivores exert strong top‐down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high‐resolution Light Detection and Ranging (LiDAR) with field measurements from size‐selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium‐ and small‐bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium‐ and small‐bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species‐specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species‐rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity. 
    more » « less
  3. Abstract Despite wide recognition of the importance of anthropogenically driven changes in large herbivore communities—including both declines in wildlife and increases in livestock—there remain large gaps in our knowledge about the impacts of these changes on plant communities, particularly when combined with concurrent changes in climate. Considering these prominent forms of global change in tandem enables us to better understand controls on savanna vegetation structure and diversity under real‐world conditions.We conducted a field experiment using complete and semi‐permeable herbivore exclosures to explore the difference in plant communities among sites with wild herbivores only, with cattle in addition to wild herbivores, and with no large herbivores. To understand variation in effects across climatic contexts, the experiment was replicated at three locations along a topoclimatic gradient in California. Critically, this is the first such experiment to compare cattle and wildlife impacts along an environmental gradient within a single controlled experiment.Vegetation structure responded strongly to herbivore treatment regardless of climate. Relative to the isolated effects of wildlife, exclusion of all large herbivores generally increased structural components related to cover and above‐ground biomass while the addition of cattle led to reductions in vegetation cover, litter, shading and standing biomass. Furthermore, wildlife had a consistent neutral or positive effect on plant diversity, while the effect of livestock addition was context dependent. Cattle had a neutral to strongly negative effect at low aridity, but a positive effect at high aridity. These results suggest that (a) herbivore effects can override climate effects on vegetation structure, (b) cattle addition can drive different effects on diversity and (c) herbivore effects on diversity are modulated by climate.Synthesis. Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth's land area is managed for livestock and climate regimes are changing globally. 
    more » « less
  4. Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses. 
    more » « less
  5. This data package contains vegetation cover from plots with various levels of herbivore exclusion on the Jornada Experimental Range (JER) and Chihuahuan Desert Rangeland Research Center (CDRRC) in Dona Ana County, southern New Mexico, USA. Study sites were established in 1995; one in black grama grassland and the other in creosotebush shrubland to compare the impact of herbivores on ecosystem processes between these vegetation types. Parallel studies were established at the Sevilleta LTER site (New Mexico, USA) and Mapimi Biosphere Reserve (Durango, Mexico). Each study site is 1 km by 0.5 km in area. Four replicate experimental blocks were randomly located at the grassland study site to measure vegetation responses using exclusion treatments including a) all mammalian herbivores, including cattle, lagomorphs, and rodents, b) lagomorphs and cattle only, c) cattle only, and d) control accessible to all herbivores. Because grazing cattle are excluded from the entire creosote site, only three replicate experimental blocks were randomly located there including a) all mammalian herbivores, including lagomorphs, and rodents, b) lagomorphs only, and c) control accessible to all herbivores. Thirty-six sampling points were positioned at 5.8-meter intervals on a systematically located 6 by 6 point grid within each plot. A permanent one-meter by one-meter vegetation measurement quadrat is located at each of the 36 points. At each quadrat, percent cover by individual plant species is measured. Other measurements include height (cm) of each species in the quadrat, and plant condition (living or dead). Data were collected in the spring and fall of every year from 1995 to 2005. After 2005, sampling frequency changed to every 5 years in the fall. This study is ongoing. 
    more » « less