skip to main content


This content will become publicly available on December 1, 2024

Title: An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
Abstract

The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4Mneutron star to be$$R=11.9{8}_{-0.40}^{+0.35}$$R=11.980.40+0.35km.

 
more » « less
Award ID(s):
2010970 2117997
NSF-PAR ID:
10483517
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift ofz=0.640.32+0.83(68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm=0.80.53+2.71Gyr, stellar mass of log(M*/M) =9.690.65+0.75, star formation rate of SFR =1.441.35+9.37Myr−1, stellar metallicity of log(Z*/Z) =0.380.42+0.44, and dust attenuation ofAV=0.430.36+0.85mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.

     
    more » « less
  2. Abstract

    We present a population of 11 of the faintest (>25.5 AB mag) short gamma-ray burst (GRB) host galaxies. We model their sparse available observations using the stellar population inference codeProspector-βand develop a novel implementation to incorporate the galaxy mass–radius relation. Assuming these hosts are randomly drawn from the galaxy population and conditioning this draw on their observed flux and size in a few photometric bands, we determine that these hosts have dwarf galaxy stellar masses of7.0log(M*/M)9.1. This is striking as only 14% of short GRB hosts with previous inferred stellar masses hadM*≲ 109M. We further show these short GRBs have smaller physical and host-normalized offsets than the rest of the population, suggesting that the majority of their neutron star (NS) merger progenitors were retained within their hosts. The presumably shallow potentials of these hosts translate to small escape velocities of ∼5.5–80 km s−1, indicative of either low postsupernova systemic velocities or short inspiral times. While short GRBs with identified dwarf host galaxies now comprise ≈14% of the total Swift-detected population, a number are likely missing in the current population, as larger systemic velocities (observed from the Galactic NS population) would result in highly offset short GRBs and less secure host associations. However, the revelation of a population of short GRBs retained in low-mass host galaxies offers a natural explanation for the observedr-process enrichment via NS mergers in Local Group dwarf galaxies, and has implications for gravitational-wave follow-up strategies.

     
    more » « less
  3. An advanced LIGO and Virgo’s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant (H0), the Galactic enrichment fromr-process nucleosynthesis, and ultra-dense matter possible from forthcoming events. Here, we describe the expected constraints based on the latest expected event rates from the international gravitational-wave network and analyses of GW170817. We show the expected detection rate of gravitational waves and their counterparts, as well as how sensitive potential constraints are to the observed numbers of counterparts. We intend this analysis as support for the community when creating scientifically driven electromagnetic follow-up proposals. During the next observing run O4, we predict an annual detection rate of electromagnetic counterparts from BNS of0.430.26+0.58(1.971.2+2.68) for the Zwicky Transient Facility (Rubin Observatory).

     
    more » « less
  4. Abstract

    We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z= 0.36) and high energy (Eγ,iso∼ 1053erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peakr-band magnitude ofMr= −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN ofMNi= 0.38 ± 0.01Mand a peak bolometric luminosity ofLbol∼ 1.3 × 1043erg s−1. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in therband and derive a photospheric expansion velocity ofvph= 11,300 ± 1600 km s−1at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta massMej= 1.0 ± 0.6Mand kinetic energyEKE=1.31.2+3.3×1051erg. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness andEγ,isofor their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.

     
    more » « less
  5. Abstract

    Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$73Zn(n,$$\gamma $$γ)$$^{74}\hbox {Zn}$$74Znwas calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$γ-ray strength function ($$\gamma \hbox {SF}$$γSF) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$γSF, accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important.

     
    more » « less