Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract We report a gravitational-wave parameter estimation algorithm,AMPLFI, based on likelihood-free inference using normalizing flows. The focus ofAMPLFIis to perform real-time parameter estimation for candidates detected by machine-learning based compact binary coalescence search,Aframe. We present details of our algorithm and optimizations done related to data-loading and pre-processing on accelerated hardware. We train our model using binary black-hole (BBH) simulations on real LIGO-Virgo detector noise. Our model has million trainable parameters with training times h. Based on online deployment on a mock data stream of LIGO-Virgo data,Aframe+AMPLFIis able to pick up BBH candidates and infer parameters for real-time alerts from data acquisition with a net latency of s.more » « less
- 
            Abstract The Global Event Processor (GEP) FPGA is an area-constrained, performance-critical element of the Large Hadron Collider's (LHC) ATLAS experiment. It needs to very quickly determine which small fraction of detected events should be retained for further processing, and which other events will be discarded. This system involves a large number of individual processing tasks, brought together within the overall Algorithm Processing Platform (APP), to make filtering decisions at an overall latency of no more than 8ms. Currently, such filtering tasks are hand-coded implementations of standard deterministic signal processing tasks.In this paper we present methods to automatically create machine learning based algorithms for use within the APP framework, and demonstrate several successful such deployments. We leverage existing machine learning to FPGA flows such ashls4mlandfwXto significantly reduce the complexity of algorithm design. These have resulted in implementations of various machine learning algorithms with latencies of 1.2 μs and less than 5% resource utilization on an Xilinx XCVU9P FPGA. Finally, we implement these algorithms into the GEP system and present their actual performance.Our work shows the potential of using machine learning in the GEP for high-energy physics applications. This can significantly improve the performance of the trigger system and enable the ATLAS experiment to collect more data and make more discoveries. The architecture and approach presented in this paper can also be applied to other applications that require real-time processing of large volumes of data.more » « less
- 
            Abstract The classification of variable objects provides insight into a wide variety of astrophysics ranging from stellar interiors to galactic nuclei. The Zwicky Transient Facility (ZTF) provides time-series observations that record the variability of more than a billion sources. The scale of these data necessitates automated approaches to make a thorough analysis. Building on previous work, this paper reports the results of the ZTF Source Classification Project (SCoPe), which trains neural network and XGBoost (XGB) machine-learning (ML) algorithms to perform dichotomous classification of variable ZTF sources using a manually constructed training set containing 170,632 light curves. We find that several classifiers achieve high precision and recall scores, suggesting the reliability of their predictions for 209,991,147 light curves across 77 ZTF fields. We also identify the most important features for XGB classification and compare the performance of the two ML algorithms, finding a pattern of higher precision among XGB classifiers. The resulting classification catalog is available to the public, and the software developed forSCoPeis open source and adaptable to future time-domain surveys.more » « less
- 
            Abstract Matched-filtering detection techniques for gravitational-wave (GW) signals in ground-based interferometers rely on having well-modeled templates of the GW emission. Such techniques have been traditionally used in searches for compact binary coalescences (CBCs), and have been employed in all known GW detections so far. However, interesting science cases aside from compact mergers do not yet have accurate enough modeling to make matched filtering possible, including core-collapse supernovae and sources where stochasticity may be involved. Therefore the development of techniques to identify sources of these types is of significant interest. In this paper, we present a method of anomaly detection based on deep recurrent autoencoders to enhance the search region to unmodeled transients. We use a semi-supervised strategy that we name‘Gravitational Wave Anomalous Knowledge’(GWAK). While the semi-supervised approach to this problem entails a potential reduction in accuracy compared to fully supervised methods, it offers a generalizability advantage by enhancing the reach of experimental sensitivity beyond the constraints of pre-defined signal templates. We construct a low-dimensional embedded space using the GWAK method, capturing the physical signatures of distinct signals on each axis of the space. By introducing signal priors that capture some of the salient features of GW signals, we allow for the recovery of sensitivity even when an unmodeled anomaly is encountered. We show that regions of the GWAK space can identify CBCs, detector glitches and also a variety of unmodeled astrophysical sources.more » « less
- 
            Abstract We study the performance of a cloud-based GPU-accelerated inference server to speed up event reconstruction in neutrino data batch jobs. Using detector data from the ProtoDUNE experiment and employing the standard DUNE grid job submission tools, we attempt to reprocess the data by running several thousand concurrent grid jobs, a rate we expect to be typical of current and future neutrino physics experiments. We process most of the dataset with the GPU version of our processing algorithm and the remainder with the CPU version for timing comparisons. We find that a 100-GPU cloud-based server is able to easily meet the processing demand, and that using the GPU version of the event processing algorithm is two times faster than processing these data with the CPU version when comparing to the newest CPUs in our sample. The amount of data transferred to the inference server during the GPU runs can overwhelm even the highest-bandwidth network switches, however, unless care is taken to observe network facility limits or otherwise distribute the jobs to multiple sites. We discuss the lessons learned from this processing campaign and several avenues for future improvements.more » « less
- 
            Abstract The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙neutron star to be$$R=11.9{8}_{-0.40}^{+0.35}$$ km.more » « less
- 
            Abstract The high instantaneous luminosity of the CERN Large Hadron Collider leads to multiple proton–proton interactions in the same or nearby bunch crossings (pileup). Advanced pileup mitigation algorithms are designed to remove this noise from pileup particles and improve the performance of crucial physics observables. This study implements a semi-supervised graph neural network for particle-level pileup noise removal, by identifying individual particles produced from pileup. The graph neural network is firstly trained on charged particles with known labels, which can be obtained from detector measurements on data or simulation, and then inferred on neutral particles for which such labels are missing. This semi-supervised approach does not depend on the neutral particle pileup label information from simulation, and thus allows us to perform training directly on experimental data. The performance of this approach is found to be consistently better than widely-used domain algorithms and comparable to the fully-supervised training using simulation truth information. The study serves as the first attempt at applying semi-supervised learning techniques to pileup mitigation, and opens up a new direction of fully data-driven machine learning pileup mitigation studies.more » « less
- 
            The increasing computational demand from growing data rates and complex machine learning (ML) algorithms in large-scale scientific experiments has driven the adoption of the Services for Optimized Network Inference on Coprocessors (SONIC) approach. SONIC accelerates ML inference by offloading it to local or remote coprocessors to optimize resource utilization. Leveraging its portability to different types of coprocessors, SONIC enhances data processing and model deployment efficiency for cutting-edge research in high energy physics (HEP) and multi-messenger astrophysics (MMA). We developed the SuperSONIC project, a scalable server infrastructure for SONIC, enabling the deployment of computationally intensive tasks to Kubernetes clusters equipped with graphics processing units (GPUs). Using NVIDIA Triton Inference Server, SuperSONIC decouples client workflows from server infrastructure, standardizing communication, optimizing throughput, load balancing, and monitoring. SuperSONIC has been successfully deployed for the CMS and ATLAS experiments at the CERN Large Hadron Collider (LHC), the IceCube Neutrino Observatory (IceCube), and the Laser Interferometer Gravitational-Wave Observatory (LIGO) and tested on Kubernetes clusters at Purdue University, the National Research Platform (NRP), and the University of Chicago. SuperSONIC addresses the challenges of the Cloud-native era by providing a reusable, configurable framework that enhances the efficiency of accelerator-based inference deployment across diverse scientific domains and industries.more » « lessFree, publicly-accessible full text available July 18, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
