Catastrophic forgetting is a significant challenge in online continual learning (OCL), especially for nonstationary data streams that do not have well-defined task boundaries. This challenge is exacerbated by the memory constraints and privacy concerns inherent in rehearsal buffers. To tackle catastrophic forgetting, in this paper, we introduce Online-LoRA, a novel framework for task-free OCL. Online-LoRA allows to finetune pre-trained Vision Transformer (ViT) models in real-time to address the limitations of rehearsal buffers and leverage pre-trained models’ performance benefits. As the main contribution, our approach features a novel online weight regularization strategy to identify and consolidate important model parameters. Moreover, Online-LoRA leverages the training dynamics of loss values to enable the automatic recognition of the data distribution shifts. Extensive experiments across many task-free OCL scenarios and benchmark datasets (including CIFAR-100, ImageNet-R, ImageNet-S, CUB-200 and CORe50) demonstrate that Online-LoRA can be robustly adapted to various ViT architectures, while achieving better performance compared to SOTA methods.
more »
« less
How do quadratic regularizers prevent catastrophic forgetting: The role of interpolation
Catastrophic forgetting undermines the effectiveness of deep neural networks (DNNs) in scenarios such as continual learning and lifelong learning. While several methods have been proposed to tackle this problem, there is limited work explaining why these methods work well. This paper has the goal of better explaining a popularly used technique for avoiding catastrophic forgetting: quadratic regularization. We show that quadratic regularizers prevent forgetting of past tasks by interpolating current and previous values of model parameters at every training iteration. Over multiple training iterations, this interpolation operation reduces the learning rates of more important model parameters, thereby minimizing their movement. Our analysis also reveals two drawbacks of quadratic regularization: (a) dependence of parameter interpolation on training hyperparameters, which often leads to training instability and (b) assignment of lower importance to deeper layers, which are generally the place forgetting occurs in DNNs. Via a simple modification to the order of operations, we show these drawbacks can be easily avoided, resulting in 6.2% higher average accuracy at 4.5% lower average forgetting. We confirm the robustness of our results by training over 2000 models in different settings.
more »
« less
- Award ID(s):
- 2008151
- PAR ID:
- 10483592
- Publisher / Repository:
- Proc. Conf. on Lifelong Learning Agents
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent success of deep neural networks in prediction tasks on wearable sensor data is evident. However, in more practical online learning scenarios, where new data arrive sequentially, neural networks suffer severely from the ``catastrophic forgetting`` problem. In real-world settings, given a pre-trained model on the old data, when we collect new data, it is practically infeasible to re-train the model on both old and new data because the computational costs will increase dramatically as more and more data arrive in time. However, if we fine-tune the model only with the new data because the new data might be different from the old data, the neural network parameters will change to fit the new data. As a result, the new parameters are no longer suitable for the old data. This phenomenon is known as catastrophic forgetting, and continual learning research aims to overcome this problem with minimal computational costs. While most of the continual learning research focuses on computer vision tasks, implications of catastrophic forgetting in wearable computing research and potential avenues to address this problem have remained unexplored. To address this knowledge gap, we study continual learning for activity recognition using wearable sensor data. We show that the catastrophic forgetting problem is a critical challenge for real-world deployment of machine learning models for wearables. Moreover, we show that the catastrophic forgetting problem can be alleviated by employing various training techniques.more » « less
-
Supervised Continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data. While most work has focused on overcoming catastrophic forgetting, one of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time. Despite recent continual learning methods largely solving the catastrophic forgetting problem, there has been little attention paid to the efficiency of these algorithms. Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage. Some methods even require more compute than training from scratch! We argue that for continual learning to have real-world applicability, the research community cannot ignore the resources used by these algorithms. There is more to continual learning than mitigating catastrophic forgetting.more » « less
-
null (Ed.)Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes. The fundamental roadblock faced by deep learning methods is that the models are optimized as “black boxes,” making it difficult to properly adjust the model parameters to preserve knowledge about previously seen data. To overcome the problem of catastrophic forgetting, we propose utilizing an alternative “white box” architecture derived from the principle of rate reduction, where each layer of the network is explicitly computed without back propagation. Under this paradigm, we demonstrate that, given a pretrained network and new data classes, our approach can provably construct a new network that emulates joint training with all past and new classes. Finally, our experiments show that our proposed learning algorithm observes significantly less decay in classification performance, outperforming state of the art methods on MNIST and CIFAR-10 by a large margin and justifying the use of “white box” algorithms for incremental learning even for sufficiently complex image data.more » « less
-
Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM MemoryWhile RRAM crossbar-based In-Memory Computing (IMC) has proven highly effective in accelerating Deep Neural Networks (DNNs) inference, RRAM-based on-device training is less explored due to its high energy consumption of weight re-programming and cells' low endurance problem. Besides, emerging trends indicate a need for on-device continual learning which sequentially acquires knowledge from multiple tasks to enhance user's experiences and eliminate data privacy concerns. However, learning on each new task leads to forgetting prior learned knowledge on prior tasks, which is known as catastrophic forgetting. To address these challenges, we are the first to propose a novel training framework, Hyb-Learn, for enabling on-device continual learning with a hybrid RRAM/SRAM IMC architecture design. Specifically, when training each new arriving task, our approach first partitions the model into two groups based on the proposed task-correlated PE-wise correlation to freeze or re-training, and correspondingly mapping to RRAM and SRAM, respectively. In practice, the RRAM stores frozen weights with strong task correlation to prior tasks to eliminate the high cost of weight reprogramming issue of RRAM, while the SRAM stores the remaining weights that will be updated. Furthermore, to maximize the freezing ratio for improving training efficiency while maintaining accuracy and mitigating catastrophic forgetting, we incorporate self-supervised learning algorithms that are initialized from a pre-trained model for training each new task.more » « less
An official website of the United States government

