We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a "free lunch," requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM. 
                        more » 
                        « less   
                    
                            
                            On the Role of Attention in Prompt-tuning
                        
                    
    
            Prompt-tuning is an emerging strategy to adapt large language models (LLM) to downstream tasks by learning a (soft-)prompt parameter from data. Despite its success in LLMs, there is limited theoretical understanding of the power of prompt-tuning and the role of the attention mechanism in prompting. In this work, we explore prompt-tuning for one-layer attention architectures and study contextual mixture-models where each input token belongs to a context-relevant or -irrelevant set. We isolate the role of prompttuning through a self-contained prompt-attention model. Our contributions are as follows: (1) We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention under our contextual data model. (2) We analyze the initial trajectory of gradient descent and show that it learns the prompt and prediction head with near-optimal sample complexity and demonstrate how the prompt can provably attend to sparse context-relevant tokens. (3) Assuming a known prompt but an unknown prediction head, we characterize the exact finite sample performance of prompt-attention which reveals the fundamental performance limits and the precise benefit of the context information. We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10483606
- Publisher / Repository:
- Proceedings of the 40th International Conference on Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Location:
- Honolulu, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            At the core of the popular Transformer architecture is the self-attention mechanism, which dynamically assigns softmax weights to each input token so that the model can focus on the most salient information. However, the softmax structure slows down the attention computation due to its row-wise nature, and it inherently introduces competition among tokens: as the weight assigned to one token increases, the weights of others decrease. This competitive dynamic may narrow the focus of self-attention to a limited set of features, potentially overlooking other informative characteristics. Recent experimental studies have shown that using the element-wise sigmoid function helps eliminate token competition and reduce the computational overhead. Despite these promising empirical results, a rigorous comparison between sigmoid and softmax self-attention mechanisms remains absent in the literature. This paper closes this gap by theoretically demonstrating that sigmoid self-attention is more sample-efficient than its softmax counterpart. Toward that goal, we represent the self-attention matrix as a mixture of experts and show that ``experts'' in sigmoid self-attention require significantly less data to achieve the same approximation error as those in softmax self-attention.more » « less
- 
            A striking property of transformers is their ability to perform in-context learning (ICL), a machine learning framework in which the learner is presented with a novel context during inference implicitly through some data, and tasked with making a prediction in that context. As such, that learner must adapt to the context without additional training. We explore the role of softmax attention in an ICL setting where each context encodes a regression task. We show that an attention unit learns a window that it uses to implement a nearest-neighbors predictor adapted to the landscape of the pretraining tasks. Specifically, we show that this window widens with decreasing Lipschitzness and increasing label noise in the pretraining tasks. We also show that on low-rank, linear problems, the attention unit learns to project onto the appropriate subspace before inference. Further, we show that this adaptivity relies crucially on the softmax activation and thus cannot be replicated by the linear activation often studied in prior theoretical analyses.more » « less
- 
            Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating input graphs or reframing downstream tasks as pre-training tasks without fine-tuning the pre-trained GNN models. While recent graph prompt tuning methods have proven effective in adapting pre-trained GNN models for downstream tasks, they overlook the crucial role of edges in graph prompt design, which can significantly affect the quality of graph representations for downstream tasks. In this study, we propose EdgePrompt, a simple yet effective graph prompt tuning method from the perspective of edges. Unlike previous studies that design prompt vectors on node features, EdgePrompt manipulates input graphs by learning additional prompt vectors for edges and incorporates the edge prompts through message passing in the pre-trained GNN models to better embed graph structural information for downstream tasks. Our method is compatible with prevalent GNN architectures pre-trained under various pre-training strategies and is universal for different downstream tasks. We provide comprehensive theoretical analyses of our method regarding its capability of handling node classification and graph classification as downstream tasks. Extensive experiments on ten graph datasets under four pre-training strategies demonstrate the superiority of our proposed method against six baselines.more » « less
- 
            null (Ed.)Context is of fundamental importance to both human and machine vision; e.g., an object in the air is more likely to be an airplane than a pig. The rich notion of context incorporates several aspects including physics rules, statistical co-occurrences, and relative object sizes, among others. While previous work has focused on crowd-sourced out-of-context photographs from the web to study scene context, controlling the nature and extent of contextual violations has been a daunting task. Here we introduce a diverse, synthetic Out-of-Context Dataset (OCD) with fine-grained control over scene context. By leveraging a 3D simulation engine, we systematically control the gravity, object co-occurrences and relative sizes across 36 object categories in a virtual household environment. We conducted a series of experiments to gain insights into the impact of contextual cues on both human and machine vision using OCD. We conducted psychophysics experiments to establish a human benchmark for out-of-context recognition, and then compared it with state-of-the-art computer vision models to quantify the gap between the two. We propose a context-aware recognition transformer model, fusing object and contextual information via multi-head attention. Our model captures useful information for contextual reasoning, enabling human-level performance and better robustness in out-of-context conditions compared to baseline models across OCD and other out-of-context datasets. All source code and data are publicly available at https://github.com/kreimanlab/WhenPigsFlyContextmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
