Prompt-tuning is an emerging strategy to adapt large language models (LLM) to downstream tasks by learning a (soft-)prompt parameter from data. Despite its success in LLMs, there is limited theoretical understanding of the power of prompt-tuning and the role of the attention mechanism in prompting. In this work, we explore prompt-tuning for one-layer attention architectures and study contextual mixture-models where each input token belongs to a context-relevant or -irrelevant set. We isolate the role of prompttuning through a self-contained prompt-attention model. Our contributions are as follows: (1) We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention under our contextual data model. (2) We analyze the initial trajectory of gradient descent and show that it learns the prompt and prediction head with near-optimal sample complexity and demonstrate how the prompt can provably attend to sparse context-relevant tokens. (3) Assuming a known prompt but an unknown prediction head, we characterize the exact finite sample performance of prompt-attention which reveals the fundamental performance limits and the precise benefit of the context information. We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information. 
                        more » 
                        « less   
                    This content will become publicly available on May 27, 2026
                            
                            Sigmoid Self-Attention has Lower Sample Complexity than Softmax Self-Attention: A Mixture-of-Experts Perspective
                        
                    
    
            At the core of the popular Transformer architecture is the self-attention mechanism, which dynamically assigns softmax weights to each input token so that the model can focus on the most salient information. However, the softmax structure slows down the attention computation due to its row-wise nature, and it inherently introduces competition among tokens: as the weight assigned to one token increases, the weights of others decrease. This competitive dynamic may narrow the focus of self-attention to a limited set of features, potentially overlooking other informative characteristics. Recent experimental studies have shown that using the element-wise sigmoid function helps eliminate token competition and reduce the computational overhead. Despite these promising empirical results, a rigorous comparison between sigmoid and softmax self-attention mechanisms remains absent in the literature. This paper closes this gap by theoretically demonstrating that sigmoid self-attention is more sample-efficient than its softmax counterpart. Toward that goal, we represent the self-attention matrix as a mixture of experts and show that ``experts'' in sigmoid self-attention require significantly less data to achieve the same approximation error as those in softmax self-attention. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2505865
- PAR ID:
- 10631894
- Publisher / Repository:
- cs.LG
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vision Transformers (ViTs) have shown impressive per-formance but still require a high computation cost as compared to convolutional neural networks (CNNs), one rea-son is that ViTs' attention measures global similarities and thus has a quadratic complexity with the number of in-put tokens. Existing efficient ViTs adopt local attention or linear attention, which sacrifice ViTs' capabilities of capturing either global or local context. In this work, we ask an important research question: Can ViTs learn both global and local context while being more efficient during inference? To this end, we propose a framework called Castling- ViT, which trains ViTs using both linear-angular attention and masked softmax-based quadratic attention, but then switches to having only linear-angular attention during inference. Our Castling- ViT leverages angular ker-nels to measure the similarities between queries and keys via spectral angles. And we further simplify it with two techniques: (1) a novel linear-angular attention mechanism: we decompose the angular kernels into linear terms and high-order residuals, and only keep the linear terms; and (2) we adopt two parameterized modules to approximate high-order residuals: a depthwise convolution and an aux-iliary masked softmax attention to help learn global and lo-cal information, where the masks for softmax attention are regularized to gradually become zeros and thus incur no overhead during inference. Extensive experiments validate the effectiveness of our Castling- ViT, e.g., achieving up to a 1.8% higher accuracy or 40% MACs reduction on classification and 1.2 higher mAP on detection under comparable FLOPs, as compared to ViTs with vanilla softmax-based at-tentions. Project page is available at here.more » « less
- 
            Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as Dyck-k, the language consisting of well-nested parentheses of k types. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process Dyck-(k, D), the subset of Dyck-k with depth bounded by D, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with D+1 layers and O(log k) memory size (per token per layer) that recognizes Dyck-(k, D), and a soft-attention network with two layers and O(log k) memory size that generates Dyck-(k, D). Experiments show that self-attention networks trained on Dyck-(k, D) generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.more » « less
- 
            null (Ed.)Transformers are expensive to train due to the quadratic time and space complexity in the self-attention mechanism. On the other hand, although kernel machines suffer from the same computation bottleneck in pairwise dot products, several approximation schemes have been successfully incorporated to considerably reduce their computational cost without sacrificing too much accuracy. In this work, we leverage the computation methods for kernel machines to alleviate the high computational cost and introduce Skyformer, which replaces the softmax structure with a Gaussian kernel to stabilize the model training and adapts the Nyström method to a non-positive semidefinite matrix to accelerate the computation. We further conduct theoretical analysis by showing that the matrix approximation error of our proposed method is small in the spectral norm. Experiments on Long Range Arena benchmark show that the proposed method is sufficient in getting comparable or even better performance than the full self-attention while requiring fewer computation resources.more » « less
- 
            Mixture of experts (MoE) has recently emerged as an effective framework to advance the efficiency and scalability of machine learning models by softly dividing complex tasks among multiple specialized sub-models termed experts. Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights. Despite its widespread use in practice, a comprehensive study on the effects of the softmax gating on the MoE has been lacking in the literature. To bridge this gap in this paper, we perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating, respectively. Furthermore, our theories also provide useful insights into the design of sample-efficient expert structures. In particular, we demonstrate that it requires polynomially many data points to estimate experts satisfying our proposed strong identifiability condition, namely a commonly used two-layer feed-forward network. In stark contrast, estimating linear experts, which violate the strong identifiability condition, necessitates exponentially many data points as a result of intrinsic parameter interactions expressed in the language of partial differential equations. All the theoretical results are substantiated with a rigorous guarantee.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
