skip to main content


This content will become publicly available on July 31, 2024

Title: Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model

Anomalously abrupt nucleation and growth kinetics in polarization switching of wurtzite ferroelectrics are demonstrated. The anomaly inspires an extension of the traditional model to a regime that simultaneous non-linear nucleation and growth occur.

 
more » « less
Award ID(s):
2119281
NSF-PAR ID:
10483633
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Materials Horizons
Volume:
10
Issue:
8
ISSN:
2051-6347
Page Range / eLocation ID:
2936 to 2944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal–ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31 P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal–ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles. 
    more » « less
  2. Abstract

    The focus of this study is to elucidate the role of particle size distribution (PSD) of metakaolin (MK) on hydration kinetics of tricalcium silicate (C3S–T1) pastes. Investigations were carried out utilizing both physical experiments and phase boundary nucleation and growth (pBNG) simulations. [C3S + MK] pastes, prepared using 8%massor 30%massMK, were investigated. Three different PSDs of MK were used: fine MK, with particulate sizes <20 µm; intermediate MK, with particulate sizes between 20 and 32 µm; and coarse MK, with particulate sizes >32 µm. Results show that the correlation between specific surface area (SSA) of MK's particulates and the consequent alteration in hydration behavior of C3S in first 72 hours is nonlinear and nonmonotonic. At low replacement of C3S (ie, at 8%mass), fine MK, and, to some extent, coarse MK act as fillers, and facilitate additional nucleation and growth of calcium silicate hydrate (C–S–H). When C3S replacement increases to 30%mass, the filler effects of both fine and coarse MK are reversed, leading to suppression of C–S–H nucleation and growth. Such reversal of filler effect is also observed in the case of intermediate MK; but unlike the other PSDs, the intermediate MK shows reversal at both low and high replacement levels. This is due to the ability of intermediate MK to dissolve rapidly—with faster kinetics compared to both coarse and fine MK—which results in faster release of aluminate [Al(OH)4] ions in the solution. The aluminate ions adsorb onto C3S and MK particulates and suppress C3S hydration by blocking C3S dissolution sites and C–S–H nucleation sites on the substrates’ surfaces and suppressing the post‐nucleation growth of C–S–H. Overall, the results suggest that grinding‐based enhancement in SSA of MK particulates does not necessarily enhance early‐age hydration of C3S.

     
    more » « less
  3. Crystallization is at the heart of many industrial processes in pharmaceuticals, dyes and pigments, microelectronics, and emerging wearable sensors. This paper reviews nucleation and early-stage crystal growth activated by an electrical pulse at microelectrodes and nanoelectrodes. We review thermodynamic and kinetic theories of electrochemistry developed around microelectrodes. We describe various methods to make microelectrodes and nanoelectrodes. Fundamental understanding is still needed for predicting and controlling nucleation and early-stage crystal growth. Using nanoelectrodes, nucleation and growth kinetics can be studied on one nucleation site at a time. In contrast, on macroelectrodes, nanoparticles are nucleated at random sites and at different times. This gives rise to overlapping growth zones resulting in inhomogeneous particle deposition and growth. The random size and density distributions prevent electrodeposition from being widely adopted as a manufacturing tool for making nanodevices. We describe advances in electrodeposition of metal nanoparticles and organic charge-transfer complexes on micro/nanoelectrodes. We anticipate increased interests in applying electrochemistry for making nanodevices particularly nanosensors and nanosensor arrays. These electrochemically fabricated nanosensor arrays will in turn fulfill the promise of nanoelectrodes as the most advanced analytical tools for medical diagnostics, environmental monitoring, and renewable energy.

     
    more » « less
  4. Abstract

    The dynamics of ferroelectric domain switching are directly mapped in a PbZr0.2Ti0.8O3thin film using piezoresponse force microscopy. Employing the rastering tip as a poling electrode to locally apply a fixed bias near the coercive field, while simultaneously monitoring the evolving domain pattern during continuous imaging, the effectively independent switching dynamics for numerous domains are directly investigated. While areal poling follows the anticipated S‐curve, this is shown to be the collective outcome of linear terminal radial growth for an ensemble of independently nucleating domains. By repeating such spatially resolved measurements in the same region, but with progressively greater fields, nucleation sites and growth patterns are shown to clearly repeat. This reveals apparent defects which comparatively promote switching, and nucleation times and growth rates that accelerate exponentially. After analyzing and mapping the ratio of activation energies for nucleation to growth, a high density of nucleation sites can possibly be activated with higher poling fields—even if only at the start of a poling process—enabling faster and more efficient switching to be engineered as directly demonstrated.

     
    more » « less
  5. Methane clathrates are widespread on the ocean floor of the Earth. A better understanding of methane clathrate formation has important implications for natural-gas exploitation, storage, and transportation. A key step toward understanding clathrate formation is hydrate nucleation, which has been suggested to involve multiple evolution pathways. Herein, a unique nucleation/growth pathway for methane clathrate formation has been identified by analyzing the trajectories of large-scale molecular dynamics (MD) simulations. In particular, ternary water-ring aggregations (TWRAs) have been identified as fundamental structures for characterizing the nucleation pathway. Based on this nucleation pathway, the critical nucleus size and nucleation timescale can be quantitatively determined. Specifically, a methane hydration layer compression/shedding process is observed to be the critical step in (and driving) the nucleation/growth pathway, which is manifested through overlapping/compression of the surrounding hydration layers of the methane molecules, followed by detachment (shedding) of the hydration layer. As such, an effective way to control methane hydrate nucleation is to alter the hydration layer compression/shedding process during the course of nucleation.

     
    more » « less