skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arc ubiquitination regulates endoplasmic reticulum-mediated Ca2+ release and CaMKII signaling
Synaptic plasticity relies on rapid, yet spatially precise signaling to alter synaptic strength. Arc is a brain enriched protein that is rapidly expressed during learning-related behaviors and is essential for regulating metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD). We previously showed that disrupting the ubiquitination capacity of Arc enhances mGluR-LTD; however, the consequences of Arc ubiquitination on other mGluR-mediated signaling events is poorly characterized. Here we find that pharmacological activation of Group I mGluRs with S-3,5-dihydroxyphenylglycine (DHPG) increases Ca2+release from the endoplasmic reticulum (ER). Disrupting Arc ubiquitination on key amino acid residues enhances DHPG-induced ER-mediated Ca2+release. These alterations were observed in all neuronal subregions except secondary branchpoints. Deficits in Arc ubiquitination altered Arc self-assembly and enhanced its interaction with calcium/calmodulin-dependent protein kinase IIb (CaMKIIb) and constitutively active forms of CaMKII in HEK293 cells. Colocalization of Arc and CaMKII was altered in cultured hippocampal neurons, with the notable exception of secondary branchpoints. Finally, disruptions in Arc ubiquitination were found to increase Arc interaction with the integral ER protein Calnexin. These results suggest a previously unknown role for Arc ubiquitination in the fine tuning of ER-mediated Ca2+signaling that may support mGluR-LTD, which in turn, may regulate CaMKII and its interactions with Arc.  more » « less
Award ID(s):
2047700
PAR ID:
10483686
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Cellular Neuroscience
Volume:
17
ISSN:
1662-5102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). A critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activityin vivo,and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measurein vivo. We examine the effects of “CaM-trapping,” a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity. 
    more » « less
  2. The endoplasmic reticulum (ER) forms a continuous and dynamic network throughout a neuron, extending from dendrites to axon terminals, and axonal ER dysfunction is implicated in several neurological disorders. In addition, tight junctions between the ER and plasma membrane (PM) are formed by several molecules including Kv2 channels, but the cellular functions of many ER-PM junctions remain unknown. Recently, dynamic Ca 2+ uptake into the ER during electrical activity was shown to play an essential role in synaptic transmission. Our experiments demonstrate that Kv2.1 channels are necessary for enabling ER Ca 2+ uptake during electrical activity, as knockdown (KD) of Kv2.1 rendered both the somatic and axonal ER unable to accumulate Ca 2+ during electrical stimulation. Moreover, our experiments demonstrate that the loss of Kv2.1 in the axon impairs synaptic vesicle fusion during stimulation via a mechanism unrelated to voltage. Thus, our data demonstrate that a nonconducting role of Kv2.1 exists through its binding to the ER protein VAMP-associated protein (VAP), which couples ER Ca 2+ uptake with electrical activity. Our results further suggest that Kv2.1 has a critical function in neuronal cell biology for Ca 2+ handling independent of voltage and reveals a critical pathway for maintaining ER lumen Ca 2+ levels and efficient neurotransmitter release. Taken together, these findings reveal an essential nonclassical role for both Kv2.1 and the ER-PM junctions in synaptic transmission. 
    more » « less
  3. DeMartino, George (Ed.)
    Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates of the microtubule-associated protein tau, a main component of neurofibrillary tangles. Alzheimer’s disease (AD) is the most common type of tauopathy and dementia, with amyloid-beta pathology as an additional hallmark feature of the disease. Besides its role in stabilizing microtubules, tau is localized at postsynaptic sites and can regulate synaptic plasticity. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that plays a key role in synaptic plasticity, learning, and memory. Arc has been implicated in AD pathogenesis and regulates the release of amyloid-beta. We found that decreased Arc levels correlate with AD status and disease severity. Importantly, Arc protein was upregulated in the hippocampus of Tau KO mice and dendrites of Tau KO primary hippocampal neurons. Overexpression of tau decreased Arc stability in an activity-dependent manner, exclusively in neuronal dendrites, which was coupled to an increase in the expression of dendritic and somatic surface GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. The tau-dependent decrease in Arc was found to be proteasome-sensitive, yet independent of Arc ubiquitination and required the endophilin-binding domain of Arc. Importantly, these effects on Arc stability and GluA1 localization were not observed in the commonly studied tau mutant, P301L. These observations provide a potential molecular basis for synaptic dysfunction mediated through the accumulation of tau in dendrites. Our findings confirm that Arc is misregulated in AD and further show a physiological role for tau in regulating Arc stability and AMPA receptor targeting. 
    more » « less
  4. Abstract Multi‐scale calcium (Ca2+) dynamics, exhibiting wide‐ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic‐reticulum (ER)‐targeted Ca2+indicator, R‐CatchER, which showed superior kinetics in vitro (koff≥2×103 s−1,kon≥7×106 M−1 s−1) and in multiple cell types. R‐CatchER captured spatiotemporal ER Ca2+dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+‐based functional cooperativity of CaSR. We elucidate the mechanism of R‐CatchER and propose a principle to rationally design genetically encoded Ca2+indicators with a single Ca2+‐binding site and fast kinetics by tuning rapid fluorescent‐protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G‐CatchER2, an upgrade of our previous (G‐)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+dynamics, and drug discovery. 
    more » « less
  5. Neurotransmission is shaped by extracellular pH. Alkalization enhances pH-sensitive transmitter release and receptor activation, whereas acidification inhibits these processes and can activate acid-sensitive conductances in the synaptic cleft. Previous work has shown that the synaptic cleft can either acidify because of synaptic vesicular release and/or alkalize because of Ca2+extrusion by the plasma membrane ATPase (PMCA). The direction of change differs across synapse types. At the mammalian neuromuscular junction (NMJ), the direction and magnitude of pH transients in the synaptic cleft during transmission remain ambiguous. We set out to elucidate the extracellular pH transients that occur at this cholinergic synapse under near-physiological conditions and identify their sources. We monitored pH-dependent changes in the synaptic cleft of the mouse levator auris longus using viral expression of the pseudoratiometric probe pHusion-Ex in the muscle. Using mice from both sexes, a significant and prolonged alkalization occurred when stimulating the connected nerve for 5 s at 50 Hz, which was dependent on postsynaptic intracellular Ca2+release. Sustained stimulation for a longer duration (20 s at 50 Hz) caused additional prolonged net acidification at the cleft. To investigate the mechanism underlying cleft alkalization, we used muscle-expressed GCaMP3 to monitor the contribution of postsynaptic Ca2+. Activity-induced liberation of intracellular Ca2+in muscle positively correlated with alkalization of the synaptic cleft, whereas inhibiting PMCA significantly decreased the extent of cleft alkalization. Thus, cholinergic synapses of the mouse NMJ typically alkalize because of cytosolic Ca2+liberated in muscle during activity, unless under highly strenuous conditions where acidification predominates. SIGNIFICANCE STATEMENTChanges in synaptic cleft pH alter neurotransmission, acting on receptors and channels on both sides of the synapse. Synaptic acidification has been associated with a myriad of diseases in the central and peripheral nervous system. Here, we report that in near-physiological recording conditions the cholinergic neuromuscular junction shows use-dependent bidirectional changes in synaptic cleft pH—immediate alkalinization and a long-lasting acidification under prolonged stimulation. These results provide further insight into physiologically relevant changes at cholinergic synapses that have not been defined previously. Understanding and identifying synaptic pH transients during and after neuronal activity provides insight into short-term synaptic plasticity synapses and may identify therapeutic targets for diseases. 
    more » « less