skip to main content


Title: Impact of Synthetic Arctic Argo-Type Floats in a Coupled Ocean–Sea Ice State Estimation Framework
Abstract The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.  more » « less
Award ID(s):
1924546 1936626
NSF-PAR ID:
10188439
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
37
Issue:
8
ISSN:
0739-0572
Page Range / eLocation ID:
1477 to 1495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In sea ice–covered polar oceans, profiling Argo floats are often unable to surface for 9 months or longer, rendering acoustic RAFOS tracking the only method to obtain unambiguous under-ice positions. Tracking RAFOS-enabled floats has historically relied on the ARTOA3 software, which had originally been tailored toward nonprofiling floats in regions featuring the sound fixing and ranging (SOFAR) channel with acoustic ranges of approximately 1000 km. However, in sea ice–covered regions, RAFOS tracking is challenged due to (i) reduced acoustic ranges of RAFOS signals, and (ii) enhanced uncertainties in float and sound source clock offsets. A new software, built on methodologies of previous ARTOA versions, called artoa4argo, has been created to overcome these issues by exploiting additional float satellite fixes, resolving ambiguous float positions when tracking with only two sources and systematically resolving float and sound source clock offsets. To gauge the performance of artoa4argo, 21 RAFOS-enabled profiling floats deployed in the Weddell Sea during 2008–12 were tracked. These have previously been tracked in independent studies with a Kalman smoother and a multiconstraint method. The artoa4argo improves tracking by automating and streamlining methods. Although artoa4argo does not necessarily produce positions for every time step, which the Kalman smoother and multiconstraint methods do, whenever a track location is available, it outperforms both methods.

    Significance Statement

    Argo is an international program that collects oceanic data using floats that drift with ocean currents and sample the water column from 2000-m depth to the surface every 7–10 days. Upon surfacing, the float acquires a satellite position and transmits its data via satellite. In polar regions, with extensive seasonal sea ice coverage, floats are unable to surface for many months. Thus, any under-ice samples collected are missing positions, hampering their use in scientific endeavors. Since monitoring of polar regions is imperative to better understand and predict the effects of climate change, hydroacoustic tracking is employed there. Here a new acoustic tracking software, artoa4argo, is introduced, which improves tracking of these floats.

     
    more » « less
  2. Abstract

    Under‐ice phytoplankton “blooms” have been observed in the Southern Ocean, although irradiance is extremely low and vertical mixing is assumed to be deep. Most under‐ice data have been collected using Argo floats, as research expeditions during austral fall and winter are limited. Hydrographic measurements under dense ice cover indicate that vertical mixing in weakly stratified systems may be less than previously suggested, and that the accepted determinations of mixed layer depths are inappropriate in regions with extremely weak stratification, such as those under ice. Vertical gradients in density suggest that mixed layers in the Ross Sea in early October are not extremely deep; furthermore, while phytoplankton biomass is low, it has begun to accumulate under ice. Growth rates indicate that phytoplankton growth in the Ross Sea begins in early September. Extending the period of growth may have substantial impacts on carbon biogeochemistry and food web energetics in ice‐covered waters.

     
    more » « less
  3. Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean. 
    more » « less
  4. null (Ed.)
    In 2020, the Woods Hole Oceanographic Institution (WHOI) celebrates 90 years of research, education, and exploration of the World Ocean. Since inception this has included Arctic studies. In fact, WHOI’s first technical report is on the oceanographic data obtained during the submarine “Nautilus” polar expedition in 1931. In 1951 and 1952, WHOI scientists supervised the collection of hydrographic data during the U.S. Navy SkiJump I & II expeditions utilizing ski-equipped aircraft landings in the Beaufort Sea, and inferred the Beaufort Gyre circulation cell and existence of a mid-Arctic ridge. Later classified studies, particularly concerning under-ice acoustics, were conducted by WHOI personnel from Navy and Air Force ice camps. With the advent of simple satellite communications and positioning, WHOI oceanographers began to deploy buoys on sea ice to obtain surface atmosphere, ice, and upper ocean time series data in the central Arctic beginning in 1987. Observations from these first systems were limited technologically to discrete depths and constrained by power considerations, satellite throughput, as well as high costs. As technologies improved, WHOI developed the drifting Ice-Tethered Profiler (ITP) to obtain vertically continuous upper ocean data several times per day in the ice-covered basins and telemeter the data back in near real time to the lab. Since the 1980s, WHOI scientists have also been involved in geological, biological, ecological and geochemical studies of Arctic waters, typically from expeditions utilizing icebreaking vessels, or air supported drifting platforms. Since the 2000s, WHOI has maintained oceanographic moorings on the Beaufort Shelf and in the deep Canada Basin, the latter an element of the Beaufort Gyre Observing System (BGOS). BGOS maintains oceanographic moorings via icebreaker, and conducts annual hydrographic and geochemical surveys each summer to document the Beaufort Gyre freshwater reservoir that has changed significantly since earlier investigations from the 1950s–1980s. With the experience and results demonstrated over the past decades for furthering Arctic research, WHOI scientists are well positioned to continue to explore and study the polar oceans in the decades ahead 
    more » « less
  5. Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.

     
    more » « less