Surface water change has been documented across the Arctic due to thawing permafrost and changes in the precipitation/evapotranspiration balance. This dataset uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to track changes in surface water across the region over the past two decades. The superfine water index (SWI) is a unitless global water cover index developed specifically for MODIS data and validated in high northern latitudes. Variation in SWI can also track changes in surface water that occur at the sub-MODIS pixel scale (i.e., changes in water bodies smaller a MODIS pixel, ~500 meters (m)). This dataset (1) maps the average July SWI over pan-Arctic for each year of the MODIS record (2000-2021) and (2) maps the trends in July SWI over 2000-2012 (i.e., Sen's slope of the pixel-wise SWI vs. time). The spatial resolution of this dataset is ~500 m. The yearly SWI files are processed for the entire continuous and discontinuous permafrost zone. The 2000-2021 trend file is processed for lake-rich regions of the Arctic (i.e., lake coverage greater than 5%), as was published in the Webb et al, 2022 paper. The 2000-2022 trend file is processed for the entire continuous and discontinuous permafrost zone. Corresponding publication: Webb, Elizabeth E., Anna K. Liljedahl, Jada A. Cordeiro, Michael M. Loranty, Chandi Witharana, and Jeremy W. Lichstein (2022), Permafrost thaw drives surface water decline across lake-rich regions of the Arctic, Nature Climate Change, doi.org/10.1038/s41558-022-01455-w
more »
« less
Houston Lightning Mapping Array (HLMA) Flash-level data. Version 1.0
Houston Lightning Mapping Array (HLMA) post-processed (L2+) data, collected during the ESCAPE (Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment) field campaign IOP period (6 June - 31 July 2022), and the remaining DOE TRACER IOP period (July-Sep 2022). These data were processed uniformly with reasonable default quality control parameters and are available in NetCDF format.
more »
« less
- Award ID(s):
- 2019939
- PAR ID:
- 10483792
- Publisher / Repository:
- UCAR/NCAR - Earth Observing Laboratory
- Date Published:
- Format(s):
- Medium: X Size: 103 data files; 1 ancillary/documentation file; 5 GiB
- Size(s):
- 103 data files 1 ancillary/documentation file 5 GiB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Costagliola, Ciro (Ed.)Purpose. This study investigated how a conscious change in ocular accommodation affects intraocular pressure (IOP) and ocular biometrics in healthy adult volunteers of different ages. Methods. Thirty-five healthy volunteers without ocular disease or past ocular surgery, and with refractive error between −3.50 and +2.50 diopters, were stratified into 20, 40, and 60 year old (y.o.) age groups. Baseline measurements of central cornea thickness, anterior chamber depth, anterior chamber angle, cornea diameter, pupil size, and ciliary muscle thickness were made by autorefraction and optical coherence tomography (OCT), while IOP was measured by pneumotonometry. Each subject’s right eye focused on a target 40 cm away. Three different tests were performed in random order: (1) 10 minutes of nonaccommodation (gazing at the target through lenses that allowed clear vision without accommodating), (2) 10 minutes of accommodation (addition of a minus 3 diopter lens), and (3) 10 minutes of alternating between accommodation and nonaccommodation (1-minute intervals). IOP was measured immediately after each test. A 20-minute rest period was provided between tests. Data from 31 subjects were included in the study. ANOVA and paired t-tests were used for statistical analyses. Results. Following alternating accommodation, IOP decreased by 0.7 mmHg in the right eye when all age groups were combined ( p = 0.029). Accommodation or nonaccommodation alone did not decrease IOP. Compared to the 20 y.o. group, the 60 y.o. group had a thicker ciliary muscle within 75 μm of the scleral spur, a thinner ciliary muscle at 125–300 μm from the scleral spur, narrower anterior chamber angles, shallower anterior chambers, and smaller pupils during accommodation and nonaccommodation ( p ’s < 0.01). Conclusion. Alternating accommodation, but not constant accommodation, significantly decreased IOP. This effect was not lost with aging despite physical changes to the aging eye. A greater accommodative workload and/or longer test period may improve the effect.more » « less
-
This dataset comprises the geotechnical data from a series of surveys conducted in Harrison Bay, Alaska in July/August of 2021 and 2021. The contribution of this specific dataset to the overall project goals was connecting geotechnical sediment properties to erodibility parameters in an Arctic coastal environment. During the 2021 survey, geotechnical sediment properties from a portable-free fall penetrometer (PFFP) were related to physical sampling to develop a regional sediment classification scheme, and the data collected during the 2022 survey aimed to connect the results from the previous year to laboratory-based erodibility parameters from the Jet Erosion Test (JET), which was conducted on gravity core samples taken from the site. The attached repository contains both raw and processed data, and the specifics of the file structure can be found in the readMe.txt file.more » « less
-
Newton, Irene_L G (Ed.)ABSTRACT We report 40 metagenomic libraries collected from the Winam Gulf of Lake Victoria during May–July of 2022–2023 and an additional eight opportunistic libraries from adjacent Lakes Simbi, Naivasha, and regional river systems. The sampling period captured cyanobacterial bloom events – shedding insight onto community composition and genomic potential.more » « less
-
This dataset contains dissolved organic carbon concentrations from surface water samples collected at 100 urban stream and canal locations in the greater Miami, Florida metropolitan area. Samples were collected five times across different seasons to capture spatial and seasonal variation in DOC concentration. These events include the wet seasons of 2021 and 2022, as well as the dry season of 2022, specifically: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13). These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
An official website of the United States government
