Abstract The type II polyproline helix (PPII) is a fundamental secondary structure of proteins, important in globular proteins, in intrinsically disordered proteins, and at protein‐protein interfaces. PPII is stabilized in part byn→π* interactions between consecutive carbonyls, via electron delocalization between an electron‐donor carbonyl lone pair (n) and an electron‐acceptor carbonyl (π*) on the subsequent residue. We previously demonstrated that changes to the electronic properties of the acyl donor can predictably modulate the strength ofn→π* interactions, with data from model compounds, in solution in chloroform, in the solid state, and computationally. Herein, we examined whether the electronic properties of acyl capping groups could modulate the stability of PPII in peptides in water. InX−PPGY‐NH2peptides (X=10 acyl capping groups), the effect of acyl group identity on PPII was quantified by circular dichroism and NMR spectroscopy. Electron‐rich acyl groups promoted PPII relative to the standard acetyl (Ac−) group, with the pivaloyl andiso‐butyryl groups most significantly increasing PPII. In contrast, acyl derivatives with electron‐withdrawing substituents and the formyl group relatively disfavored PPII. Similar results, though lesser in magnitude, were also observed inX−APPGY‐NH2peptides, indicating that the capping group can impact PPII conformation at both proline and non‐proline residues. The pivaloyl group was particularly favorable in promoting PPII. The effects of acyl capping groups were further analyzed inX–DfpPGY‐NH2andX−ADfpPGY‐NH2peptides, Dfp=4,4‐difluoroproline. Data on these peptides indicated that acyl groups induced order Piv‐ > Ac‐ > For‐. These results suggest that greater consideration should be given to the identity of acyl capping groups in inducing structure in peptides.
more »
« less
A multi‐descriptor analysis of substituent effects on the structure and aromaticity of benzene derivatives: π‐Conjugation versus charge effects
Abstract This work provides a detailed multi‐component analysis of aromaticity in monosubstituted (X = CH3, C, C, NH2, NH−, NH+, OH, O−, and O+) andpara‐homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single‐reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0–T1splitting) properties. The findings reveal that appropriateπ‐electron‐donating andπ‐electron‐accepting substituents with suitable size and symmetry can interact with theπ‐system of the ring, significantly influencingπ‐electron delocalization. While the charge factor has a minimal impact onπ‐electron delocalization, the presence of apzorbital capable of interacting with theπ‐electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.
more »
« less
- Award ID(s):
- 2107923
- PAR ID:
- 10483821
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- ISSN:
- 0192-8651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.more » « less
-
Abstract We report production rates of H2O and nine trace molecules (C2H6, CH4, H2CO, CH3OH, HCN, NH3, C2H2, OCS, and CO) in long-period comet C/2020 S3 (Erasmus) using the high-resolution, cross-dispersed infrared spectrograph (iSHELL) at the NASA Infrared Telescope Facility, on two pre-perihelion dates at heliocentric distancesRh= 0.49 and 0.52 au. Our molecular abundances with respect to simultaneously or contemporaneously measured H2O indicate that S3 is depleted in CH3OH compared to its mean abundance relative to H2O among the overall comet population (Oort Cloud comets and Jupiter-family comets combined), whereas the eight other measured species have near-average abundances relative to H2O. In addition, compared to comets observed atRh< 0.80 au at near-infrared wavelengths, S3 showed enhancement in the abundances of volatile species H2CO, NH3, and C2H2, indicating possible additional (distributed) sources in the coma for these volatile species. The spatial profiles of volatile species in S3 in different instrumental settings are dramatically different, which might suggest temporal variability in comet outgassing behavior between the nonsimultaneous measurements. The spatial distributions of simultaneously measured volatile species C2H6and CH4are nearly symmetric and closely track each other, while those of CO and HCN co-measured with H2O (using different instrument settings) are similar to each other and are asymmetric in the antisunward direction.more » « less
-
Abstract The photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up toca.5800 cm) originates from the effect of electron donating and electron withdrawing substituents rather than ‐delocalization and related (anti‐)aromaticity. On the basis of nonadiabatic molecular dynamics simulations, the absence of fluorescence from one of the regioisomers was explained by the occurrence of easily accessible S/S conical intersections below the vertical excitation energy level. It is demonstrated in the manuscript that the analysis of local mode force constants and the related aromaticity index represent a useful tool for the characterization of ‐delocalization effects in ‐conjugated compounds.more » « less
-
ABSTRACT This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279more » « less