skip to main content


This content will become publicly available on December 28, 2024

Title: A multi‐descriptor analysis of substituent effects on the structure and aromaticity of benzene derivatives: π‐Conjugation versus charge effects
Abstract

This work provides a detailed multi‐component analysis of aromaticity in monosubstituted (X = CH3, C, C, NH2, NH, NH+, OH, O, and O+) andpara‐homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single‐reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0–T1splitting) properties. The findings reveal that appropriateπ‐electron‐donating andπ‐electron‐accepting substituents with suitable size and symmetry can interact with theπ‐system of the ring, significantly influencingπ‐electron delocalization. While the charge factor has a minimal impact onπ‐electron delocalization, the presence of apzorbital capable of interacting with theπ‐electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.

 
more » « less
NSF-PAR ID:
10483821
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
ISSN:
0192-8651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal‐organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO‐67‐X (X: H, NH2, CH3) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature‐programmed desorption mass spectrometry (TPD‐MS) and in‐situ temperature‐programmed infrared (TP‐IR) spectroscopy. Ammonia was observed to interact with μ3−OH groups present on the secondary building unit of UiO‐67‐X MOFs via hydrogen bonding. TP‐IR studies revealed that under cryogenic UHV conditions, UiO‐67‐X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C−H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH−π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD‐MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol−1, suggesting physisorption of ammonia to UiO‐67‐X. In addition, missing linker defect sites, consisting of H2O coordinated to Zr4+sites, were detected through the formation ofnNH3⋅H2O clusters, characterized through in‐situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO‐67 MOFs. This highlights an advantage of using NH3for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO‐67‐X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.

     
    more » « less
  2. The model reactions CH3X + (NH—CH=O)M ➔ CH3—NH—NH═O or NH═CH—O—CH3 + MX (M = none, Li, Na, K, Ag, Cu; X = F, Cl, Br) are investigated to demonstrate the feasibility of Marcus theory and the hard and soft acids and bases (HSAB) principle in predicting the reactivity of ambident nucleophiles. The delocalization indices (DI) are defined in the framework of the quantum theory of atoms in molecules (QT‐AIM), and are used as the scale of softness in the HSAB principle. To react with the ambident nucleophile NH═CH—O, the carbocation H3C+from CH3X (F, Cl, Br) is actually a borderline acid according to the DI values of the forming C…N and C…O bonds in the transition states (between 0.25 and 0.49), while the counter ions are divided into three groups according to the DI values of weak interactions involving M (M…X, M…N, and M…O): group I (M = none, and Me4N) basically show zero DI values; group II species (M = Li, Na, and K) have noticeable DI values but the magnitudes are usually less than 0.15; and group III species (M = Ag and Cu(I)) have significant DI values (0.30–0.61). On a relative basis, H3C+is a soft acid with respect to group I and group II counter ions, and a hard acid with respect to group III counter ions. Therefore, N‐regioselectivity is found in the presence of group I and group II counter ions (M = Me4N, Li, Na, K), while O‐regioselectivity is observed in the presence of the group III counter ions (M = Ag, and Cu(I)). The hardness of atoms, groups, and molecules is also calculated with new functions that depend on ionization potential (I) and electron affinity (A) and use the atomic charges obtained from localization indices (LI), so that the regioselectivity is explained by the atomic hardness of reactive nitrogen atoms in the transition states according to the maximum hardness principle (MHP). The exact Marcus equation is derived from the simple harmonic potential energy parabola, so that the concepts of activation free energy, intrinsic activation barrier, and reaction energy are completely connected. The required intrinsic activation barriers can be either estimated fromab initiocalculations on reactant, transition state, and product of the model reactions, or calculated from identity reactions. The counter ions stabilize the reactant through bridging N‐ and O‐site of reactant of identity reactions, so that the intrinsic barriers for the salts are higher than those for free ambident anions, which is explained by the increased reorganization parameter Δr. The proper application of Marcus theory should quantitatively consider all three terms of Marcus equation, and reliably represent the results with potential energy parabolas for reactants and all products. For the model reactions, both Marcus theory and HSAB principle/MHP principle predict the N‐regioselectivity when M = none, Me4N, Li, Na, K, and the O‐regioselectivity when M = Ag and Cu(I). © 2019 Wiley Periodicals, Inc.

     
    more » « less
  3. Abstract

    The products of the Cl‐atom‐initiated oxidation of hydroxyacetone (HYAC, CH3C(O)CH2OH) have been examined under conditions relevant to the earth's lower atmosphere. Over the range of temperatures studied (252‐298 K), in the absence of NOx, methylglyoxal (CH3C(=O)CH=O, MGLY) was formed with a primary yield >84% (96 ± 9% at 298 K), while in the presence of elevated NOx, MGLY and formic acid were both formed as major primary products. In contrast to a previous study, acetic acid was not identified as a major primary product under the conditions studied. The results are quantitatively interpreted from a consideration of the formation of a stabilized CH3C(O)CH(OH)OO• radical, either in a ≈50% yield from the addition of O2to CH3C(O)CH•(OH) or in 100% yield from the addition of HO2to MGLY. At high temperature and low NOx, decomposition of the stabilized CH3C(O)CH(OH)OO• radical to MGLY is favored, while lower temperatures and conditions of high NOxfavor bimolecular reactions of the stabilized radical, with subsequent production of formic acid. Analysis of the data allows for a semiquantitative determination ofK3 = (2.9 ± 0.4) × 10−16cm3molecule−1, for the HO2+ MGLY ↔ CH3C(O)CH(OH)OO• equilibrium process at 298 K and a roughly order of magnitude increase inK3at 252 K.

     
    more » « less
  4. Abstract

    The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.

     
    more » « less
  5. Abstract

    We report production rates of H2O and nine trace molecules (C2H6, CH4, H2CO, CH3OH, HCN, NH3, C2H2, OCS, and CO) in long-period comet C/2020 S3 (Erasmus) using the high-resolution, cross-dispersed infrared spectrograph (iSHELL) at the NASA Infrared Telescope Facility, on two pre-perihelion dates at heliocentric distancesRh= 0.49 and 0.52 au. Our molecular abundances with respect to simultaneously or contemporaneously measured H2O indicate that S3 is depleted in CH3OH compared to its mean abundance relative to H2O among the overall comet population (Oort Cloud comets and Jupiter-family comets combined), whereas the eight other measured species have near-average abundances relative to H2O. In addition, compared to comets observed atRh< 0.80 au at near-infrared wavelengths, S3 showed enhancement in the abundances of volatile species H2CO, NH3, and C2H2, indicating possible additional (distributed) sources in the coma for these volatile species. The spatial profiles of volatile species in S3 in different instrumental settings are dramatically different, which might suggest temporal variability in comet outgassing behavior between the nonsimultaneous measurements. The spatial distributions of simultaneously measured volatile species C2H6and CH4are nearly symmetric and closely track each other, while those of CO and HCN co-measured with H2O (using different instrument settings) are similar to each other and are asymmetric in the antisunward direction.

     
    more » « less