skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of the CH and OH Groups as Proton Donors within Hydrogen Bonds
The ability of the CH group to act as proton donor is now widely accepted, even if the H bonds (HBs), which it forms are typically much weaker than those of the hydroxyl group, particularly for a sp3‐hybridized C. An NH3nucleophile is allowed to approach both the terminal methyl group and the hydroxyl of n‐butanol, so as to form either a CH··N or OH··N HB. Density functional theory calculations show that the latter is much stronger than the former. However, the strength of the CH··N HB can be amplified and approach much closer to that of OH··N by appropriate placement of suitable electron‐withdrawing and donating substituents on the butanol. The interaction energy of the CH··N HB reaches above 6–8 kcal mol−1in several cases, considerably larger than the prototype HB within the water dimer.  more » « less
Award ID(s):
1954310
PAR ID:
10636237
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemistryEurope
Volume:
3
Issue:
4
ISSN:
2751-4765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 H 21 N 3 O)(CH 3 OH)](C 24 H 20 B)·CH 3 OH or [Mn(DQEA)(OAc)(CH 3 OH)]BPh 4 ·CH 3 OH or [2] BPh 4 ·CH 3 OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to Mn II ions. In the asymmetric unit, compound [1] (BPh 4 ) 2 ·(CH 2 Cl 2 ) 1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitrogen, the nitrogen atom of each quinoline group, and the methoxy-oxygen of the tetradentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric Mn II centers have a distorted, octahedral geometry in which the quinoline nitrogen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each Mn II center, a coordinated acetate oxygen participates in C—H...O hydrogen-bonding interactions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak π – π stacking interactions and intermolecular cation–anion interactions stabilize the crystal packing. In the asymmetric unit, compound [2] BPh 4 ·CH 3 OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitrogen, the nitrogen atom of each quinoline group, and the alcohol oxygen of the tetradentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the Mn II center in [2] BPh 4 ·CH 3 OH is also a distorted octahedron, but the quinoline nitrogen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H...O) and quinolyl (C—H...O and N—H...O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of intermolecular O3—H3...O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and intermolecular cation–anion interactions contribute to the crystal packing. 
    more » « less
  2. Context.Recent JWST observations have measured the ice chemical composition towards two highly extinguished background stars, NIR38 and J110621, in the Chamaeleon I molecular cloud. The observed excess of extinction on the long-wavelength side of the H2O ice band at 3 μm has been attributed to a mixture of CH3OH with ammonia hydrates NH3·H2O), which suggests that CH3OH ice in this cloud could have formed in a water-rich environment with little CO depletion. Laboratory experiments and quantum chemical calculations suggest that CH3OH could form via the grain surface reactions CH3+ OH and/or C + H2O in water-rich ices. However, no dedicated chemical modelling has been carried out thus far to test their efficiency. In addition, it remains unexplored how the efficiencies of the proposed mechanisms depend on the astrochemical code employed. Aims.We modelled the ice chemistry in the Chamaeleon I cloud to establish the dominant formation processes of CH3OH, CO, CO2, and of the hydrides CH4and NH3(in addition to H2O). By using a set of state-of-the-art astrochemical codes (MAGICKAL, MONACO, Nautilus, UCLCHEM, and KMC simulations), we can test the effects of the different code architectures (rate equation vs. stochastic codes) and of the assumed ice chemistry (diffusive vs. non-diffusive). Methods.We consider a grid of models with different gas densities, dust temperatures, visual extinctions, and cloud-collapse length scales. In addition to the successive hydrogenation of CO, the codes’ chemical networks have been augmented to include the alternative processes for CH3OH ice formation in water-rich environments (i.e. the reactions CH3+ OH → CH3OH and C + H2O → H2CO). Results.Our models show that the JWST ice observations are better reproduced for gas densities ≥105cm−3and collapse timescales ≥105yr. CH3OH ice formation occurs predominantly (>99%) via CO hydrogenation. The contribution of reactions CH3+ OH and C + H2O is negligible. The CO2ice may form either via CO + OH or CO + O depending on the code. However, KMC simulations reveal that both mechanisms are efficient despite the low rate of the CO + O surface reaction. CH4is largely underproduced for all codes except for UCLCHEM, for which a higher amount of atomic C is available during the translucent cloud phase of the models. Large differences in the predicted abundances are found at very low dust temperatures (Tdust<12 K) between diffusive and non-diffusive chemistry codes. This is due to the fact that non-diffusive chemistry takes over diffusive chemistry at such low Tdust. This could explain the rather constant ice chemical composition found in Chamaeleon I and other dense cores despite the different visual extinctions probed. 
    more » « less
  3. Context. Evidence that the chemical characteristics around low- and high-mass protostars are similar has been found: notably, a variety of carbon-chain species and complex organic molecules (COMs) form around both types. On the other hand, the chemical compositions around intermediate-mass (IM) protostars (2M<m*< 8M) have not been studied with large samples. In particular, it is unclear the extent to which carbon-chain species form around them. Aims. We aim to obtain the chemical compositions of a sample of IM protostars, focusing particularly on carbon-chain species. We also aim to derive the rotational temperatures of HC5N to confirm whether carbon-chain species are formed in the warm gas around these stars. Methods. We conducted Q-band (31.5–50 GHz) line survey observations toward 11 mainly IM protostars with the Yebes 40 m radio telescope. The target protostars were selected from a subsample of the source list of the SOFIA Massive Star Formation project. Assuming local thermodynamic equilibrium, we derived the column densities of the detected molecules and the rotational temperatures of HC5N and CH3OH. Results. Nine carbon-chain species (HC3N, HC5N, C3H, C4Hlinear-H2CCC,cyclic-C3H2, CCS, C3S, and CH3CCH), three COMs (CH3OH, CH3CHO, and CH3CN), H2CCO, HNCO, and four simple sulfur-bearing species (13CS, C34S, HCS+, and H2CS) are detected. The rotational temperatures of HC5N are derived to be ~20–30 K in three IM protostars (Cepheus E, HH288, and IRAS 20293+3952). The rotational temperatures of CH3OH are derived in five IM sources and found to be similar to those of HC5N. Conclusions. The rotational temperatures of HC5N around the three IM protostars are very similar to those around low- and high-mass protostars. These results indicate that carbon-chain molecules are formed in lukewarm gas (~20–30 K) around IM protostars via the warm carbon-chain chemistry process. Thus, carbon-chain formation occurs ubiquitously in the warm gas around protostars across a wide range of stellar masses. Carbon-chain molecules and COMs coexist around most of the target IM protostars, which is similar to the situation for low- and high-mass protostars. In summary, the chemical characteristics around protostars are the same in the low-, intermediate- and high-mass regimes. 
    more » « less
  4. Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate. 
    more » « less
  5. Abstract Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH. 
    more » « less