skip to main content


Title: Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults
Abstract Background

Walking speed and energy economy tend to decline with age. Lower-limb exoskeletons have demonstrated potential to improve either measure, but primarily in studies conducted on healthy younger adults. Promising techniques like optimization of exoskeleton assistance have yet to be tested with older populations, while speed and energy consumption have yet to be simultaneously optimized for any population.

Methods

We investigated the effectiveness of human-in-the-loop optimization of ankle exoskeletons with older adults. Ten healthy adults > 65 years of age (5 females; mean age: 72 ± 3 yrs) participated in approximately 240 min of training and optimization with tethered ankle exoskeletons on a self-paced treadmill. Multi-objective human-in-the-loop optimization was used to identify assistive ankle plantarflexion torque patterns that simultaneously improved self-selected walking speed and metabolic rate. The effects of optimized exoskeleton assistance were evaluated in separate trials.

Results

Optimized exoskeleton assistance improved walking performance for older adults. Both objectives were simultaneously improved; self-selected walking speed increased by 8% (0.10 m/s;p = 0.001) and metabolic rate decreased by 19% (p = 0.007), resulting in a 25% decrease in energetic cost of transport (p = 8e-4) compared to walking with exoskeletons applying zero torque. Compared to younger participants in studies optimizing a single objective, our participants required lower exoskeleton torques, experienced smaller improvements in energy use, and required more time for motor adaptation.

Conclusions

Our results confirm that exoskeleton assistance can improve walking performance for older adults and show that multiple objectives can be simultaneously addressed through human-in-the-loop optimization.

 
more » « less
NSF-PAR ID:
10483823
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
21
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as a High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers. 
    more » « less
  2. Objective

    This study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance.

    Background

    An exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task.

    Methods

    Participants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues.

    Results

    For the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed.

    Conclusion

    These findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users.

    Application

    Interactions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons.

     
    more » « less
  3. Introduction: Recent studies found that wearable exoskeletons can reduce physical effort and fatigue during squatting. In particular, subject-specific assistance helped to significantly reduce physical effort, shown by reduced metabolic cost, using human-in-the-loop optimization of the exoskeleton parameters. However, measuring metabolic cost using respiratory data has limitations, such as long estimation times, presence of noise, and user discomfort. A recent study suggests that foot contact forces can address those challenges and be used as an alternative metric to the metabolic cost to personalize wearable robot assistance during walking. Methods: In this study, we propose that foot center of pressure (CoP) features can be used to estimate the metabolic cost of squatting using a machine learning method. Five subjects’ foot pressure and metabolic cost data were collected as they performed squats with an ankle exoskeleton at different assistance conditions in our prior study. In this study, we extracted statistical features from the CoP squat trajectories and fed them as input to a random forest model, with the metabolic cost as the output. Results: The model predicted the metabolic cost with a mean error of 0.55 W/kg on unseen test data, with a high correlation (r = 0.89, p < 0.01) between the true and predicted cost. The features of the CoP trajectory in the medial-lateral direction of the foot (xCoP), which relate to ankle eversion-inversion, were found to be important and highly correlated with metabolic cost. Conclusion: Our findings indicate that increased ankle eversion (outward roll of the ankle), which reflects a suboptimal squatting strategy, results in higher metabolic cost. Higher ankle eversion has been linked with the etiology of chronic lower limb injuries. Hence, a CoP-based cost function in human-in-the-loop optimization could offer several advantages, such as reduced estimation time, injury risk mitigation, and better user comfort. 
    more » « less
  4. null (Ed.)
    Human-in-the-loop optimization allows for individualized device control based on measured human performance. This technique has been used to produce large reductions in energy expenditure during walking with exoskeletons but has not yet been applied to prosthetic devices. In this series of case studies, we applied human-in-the-loop optimization to the control of an active ankle-foot prosthesis used by participants with unilateral transtibial amputation. We optimized the parameters of five control architectures that captured aspects of successful exoskeletons and commercial prostheses, but none resulted in significantly lower metabolic rate than generic control. In one control architecture, we increased the exposure time per condition by a factor of five, but the optimized controller still resulted in higher metabolic rate. Finally, we optimized for self-reported comfort instead of metabolic rate, but the resulting controller was not preferred. There are several reasons why human-in-the-loop optimization may have failed for people with amputation. Control architecture is an unlikely cause given the variety of controllers tested. The lack of effect likely relates to changes in motor adaptation, learning, or objectives in people with amputation. Future work should investigate these potential causes to determine whether human-in-the-loop optimization for prostheses could be successful. 
    more » « less
  5. Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. We present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort. 
    more » « less