Accurate estimates of earthquake magnitude are necessary to improve our understanding of seismic hazard. Unbiased magnitudes for small earthquakes are especially important because magnitude exceedance probabilities for large earthquakes are derived from the behavior of small earthquakes. Also, accurate characterization of small events is becoming increasingly important for ground motion models. However, catalog magnitudes may vary for the same event depending on network procedures and capabilities. In addition, different magnitude scales are often used for events of varying sizes. For example, moment magnitude (Mw) is the widely preferred estimate for earthquake size but it is often not available for small earthquakes (M < 3.5). As a result, statistical measures such as magnitude frequency distribution (MFD) and b-value can be biased depending on magnitude type and uncertainties that arise during the measurement process. In this research we demonstrate the capability of the relative magnitude method to provide a uniform and accurate estimate of earthquake magnitude in a variety of regions, while only requiring the use of waveform data. The study regions include the Permian Basin in Texas, central Oklahoma, and southern California. We present results in which only relative magnitudes are used to estimate MFD and b-value as well as relative magnitudes that are benchmarked to an absolute scale using a coda-envelope derived Mw calibration for small events. We also discuss potential sources of uncertainty in the relative magnitude method such as acceptable signal-to-noise ratios, cross-correlation thresholds, and choice of scaling constant, as well as our attempts to mitigate those uncertainties.
more »
« less
New Estimates of Magnitude‐Frequency Distribution and b ‐Value Using Relative Magnitudes for the 2011 Prague, Oklahoma Earthquake Sequence
Abstract The magnitude‐frequency distribution (MFD) describes the relative proportion of earthquake magnitudes and provides vital information for seismic hazard assessment. Theb‐value, derived from the MFD, is commonly used to estimate the probability that a future earthquake will exceed a specified magnitude threshold. Improved MFD andb‐value estimates are of great importance in the central and eastern United States where high volumes of fluid injection have contributed to a significant rise in seismicity over the last decade. In this study, we recalculate the magnitudes of 8,775 events for the 2011 Prague, Oklahoma sequence using a relative magnitude approach that depends only on waveform data to calculate magnitudes. We also compare the distribution of successive magnitude differences to the MFD and show that a combination of the magnitude difference distribution (MDFD) and relative magnitudes yields a reliable estimate ofb‐value. Using the MDFD and relative magnitudes, we examine the temporal and spatial variations in theb‐value and show thatb‐value ranges between ∼0.6 and 0.85 during the aftershock sequence for at least 5 months after theM5.7 mainshock, though areas surrounding the northeast part of the sequence experience higherb‐values (0.7–0.85) than the southwestern part of the Meeker‐Prague fault whereb‐value is the lowest (0.6–0.7). We also identify a cluster of off‐fault events with the highestb‐values in the catalog (0.85). These new estimates of MFD andb‐value will contribute to understanding of the relations between induced and tectonic earthquake sequences and promote discussion regarding the use ofb‐value in induced seismic hazard estimation.
more »
« less
- Award ID(s):
- 2315814
- PAR ID:
- 10483832
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 129
- Issue:
- 1
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A precise understanding of earthquake magnitudes is vital for accurate calculations of magnitude exceedance probabilities and seismic hazard assessment. However, characterization of earthquake magnitude, particularly for small events, is complicated by differences in network capabilities and procedures. Furthermore, the use of differing magnitude scales for events of various sizes introduces additional challenges and produces disparate magnitude estimates for the same events. To address the need for a consistent magnitude estimation procedure that can accurately estimate magnitude across a wide magnitude range and in diverse tectonic environments, we investigate the use of the relative magnitude method. This approach utilizes amplitude ratios of highly correlated waveforms among numerous interlinked event pairs to compute magnitude for a group of events. While the relative magnitude method is advantageous because it can be applied uniformly in various regions and does not require distance or attenuation corrections, there are several parameters that currently require human decision which may introduce bias. These include acceptable thresholds for signal-to-noise ratios and cross-correlation, filtering procedures, sampling windows, and station selection. Our research focuses on computing new relative magnitudes for events in southern California, including the 2019 Ridgecrest sequence. We investigate the uncertainty that human decision may impose on the resulting magnitudes and compare our results to other magnitude estimation methods. Finally, we present our recommendations for routine procedures that minimize uncertainty and variability in the relative magnitude method, aiming to enhance the utility of this method for future users.more » « less
-
Abstract Understanding earthquake foreshocks is essential for deciphering earthquake rupture physics and can aid seismic hazard mitigation. With regional dense seismic arrays, we identify immediate foreshocks of 527 0.9M5.4 events of the 2019 Ridgecrest earthquake sequence, including 48 earthquakes with series of immediate foreshocks. These immediate foreshocks are adjacent to the mainshocks occurring within 100 s of the mainshocks, and their P waves share high resemblances with the mainshock P waves. However, attributes of the immediate‐foreshock P waves, including the amplitudes and preceding times, do not clearly scale with the mainshock magnitudes. Our observations suggest that earthquake rupture may initiate in a universal fashion but evolves stochastically. This indicates that earthquake rupture development is likely controlled by fine‐scale fault heterogeneities in the Ridgecrest fault system, and the final magnitude is the only difference between small and large earthquakes.more » « less
-
The 2019 Ridgecrest, CA earthquake sequence has provided a unique opportunity and a rich dataset to understand earthquake source properties and near-fault structure. Using the high-quality seismic data provided by the SCEC Stress Drop Validation group, we first estimate the corner frequency of M2.0-4.5 earthquakes by applying the spectral ratio method based on empirical Green’s function (Liu et al., 2020). We relate corner frequency estimates to stress drops assuming the Brune source model and circular cracks. Our preliminary results show increasing median stress drops with magnitude for both P and S waves, from 1 MPa for M2.0 events to 10 MPa for M4.0 events, though the limited frequency bandwidth may cause underestimation for small events. The estimated moment magnitude is proportional to the catalog magnitude by a factor of 0.72, which is close to 0.74 estimated by Trugman (2020) for the Ridgecrest earthquake sequence. In the second part of the study, we examine the impact of fault zone structure on the azimuthal variation of the source spectra. Using kinematic simulations and observations of the 2003 Big Bear earthquake sequence, Huang et al. (2016) showed that fault damage zones can act as an effective wave guide and cause high-frequency wave amplification along directions close to fault strike. We use clusters of M1.5-3 earthquakes in the Ridgecrest region to further examine the azimuthal variation of the stacked source spectra and investigate if the near-source structure can affect our corner frequency estimates. We aim to develop robust methods that utilize high-quality seismic data to illuminate earthquake source processes and fault zone properties.more » « less
-
Abstract The 1886 magnitude ∼7 Summerville, South Carolina, earthquake was the largest recorded on the east coast of the United States. A better understanding of this earthquake would allow for an improved evaluation of the intraplate seismic hazard in this region. However, its source fault structure remains unclear. Starting in May 2021, a temporary 19-station short-period seismic network was deployed in the Summerville region. Here, we present our scientific motivation, station geometry, and quality of the recorded seismic data. We also show preliminary results of microearthquake detections and relocations using recordings from both our temporary and four permanent stations in the region. Starting with 52 template events, including two magnitude ∼3 events on 27 September 2021, we perform a matched filter detection with the one year of continuous data, resulting in a catalog of 181 total events. We then determine precise relative locations of a portion of these events using differential travel-time relocation methods, and compare the results with relocation results of 269 events from a previous seismic deployment in 2011–2012. We also determine focal mechanism solutions for three events from 27 September 2021 with magnitudes 2.0, 3.1, and 3.3, and infer their fault planes. Our relocation results show a south-striking west-dipping zone in the southern seismicity cluster, which is consistent with the thrust focal mechanism of the magnitude 3.3 earthquake on 27 September 2021 and results from the previous study based on the temporary deployment in 2011–2012. In comparison, the magnitudes 3.1 and 2.0 events likely occur on a north–south-striking right-lateral strike-slip fault further north, indicating complex patterns of stress and faulting styles in the region.more » « less
An official website of the United States government
