skip to main content

Title: Planar hyperbolic polaritons in 2D van der Waals materials

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3(SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications.

    more » « less
  2. Abstract

    In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.

    more » « less
  3. Abstract

    Polar van der Waals (vdW) crystals that support phonon polaritons have recently attracted much attention because they can confine infrared and terahertz (THz) light to deeply subwavelength dimensions, allowing for the guiding and manipulation of light at the nanoscale. The practical applications of these crystals in devices rely strongly on deterministic engineering of their spatially localized electromagnetic field distributions, which has remained challenging. The polariton interference can be enhanced and tailored by patterning the vdW crystalα‐MoO3into microstructures that support highly in‐plane anisotropic phonon polaritons. The orientation of the polaritonic in‐plane isofrequency curve relative to the microstructure edges is a critical parameter governing the polariton interference, rendering the configuration of infrared electromagnetic field localizations by enabling the tuning of the microstructure size and shape and the excitation frequency. Thus, the study presents an effective rationale for engineering infrared light flow in planar photonic devices.

    more » « less
  4. Abstract

    Moiré patterns at van der Waals interfaces between twisted 2D crystals give rise to distinct optoelectronic excitations, as well as, narrowly dispersive bands responsible for correlated electron phenomena. Contrasting with the conventional, mechanically stacked planar twist moirés, recent work shows twisted van der Waals interfaces spontaneously formed in nanowires of layered crystals, where Eshelby twist due to axial screw dislocations stabilizes a chiral structure with small interlayer rotation. Here, the realization of tunable twist in germanium(II) sulfide (GeS) van der Waals nanowires is reported. Tapered nanowires host continuously variable interlayer twist. Homojunctions between dislocated (chiral) and defect‐free (achiral) segments are obtained by triggering the emission of axial dislocations during growth. Measurements across such junctions, implemented here using local absorption and luminescence spectroscopy, provide a convenient tool for detecting twist effects. The results identify a versatile system for 3D twistronics, probing moiré physics, and for realizing moiré architectures without equivalent in planar systems.

    more » « less
  5. Abstract

    Polaritons in hyperbolic van der Waals materials—where principal axes have permittivities of opposite signs—are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.

    more » « less