skip to main content


Title: The Atacama Cosmology Telescope: Galactic Dust Structure and the Cosmic PAH Background in Cross-correlation with WISE
Abstract

We present a cross-correlation analysis between1resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inover the range 103<< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-measurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.

 
more » « less
NSF-PAR ID:
10483840
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
960
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 96
Size(s):
["Article No. 96"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this follow-up analysis, we update previous constraints on the transitional Planck mass (TPM) modified gravity model using the latest version of EFTCAMB and provide new constraints using South Pole Telescope (SPT) and Planck anisotropy data along with Planck cosmic microwave background lensing, baryon acoustic oscillations, and Type Ia supernovae data and a Hubble constant,H0, prior from local measurements. We find that large shifts in the Planck mass lead to large suppression of power on small scales that is disfavored by both the SPT and Planck data. Using only the SPT temperature-polarization–polarization-polarization (TE-EE) data, this suppression of power can be compensated for by an upward shift of the scalar index tons= 1.003 ± 0.016, resulting inH0=71.940.85+0.86km m−1Mpc−1and a ∼7% shift in the Planck mass. Including the Planck temperature-temperature (TT) ≤ 650 and Planck TE-EE data restricts the shift to be <5% at 2σwithH0= 70.65 ± 0.66 km m−1Mpc−1. Excluding theH0prior, the SPT and Planck data constrain the shift in the Planck mass to be <3% at 2σwith a best-fit value of 0.04%, consistent with the Λ cold dark matter limit. In this caseH0=69.090.68+0.69km s−1Mpc−1, which is partially elevated by the dynamics of the scalar field in the late Universe. This differs from early dark energy models that prefer higher values ofH0when the high-Planck TT data are excluded. We additionally constrain TPM using redshift space distortion data from BOSS DR12 and cosmic shear, galaxy–galaxy lensing, and galaxy clustering data from DES Y1, finding both disfavor transitions close to recombination, but earlier Planck mass transitions are allowed.

     
    more » « less
  2. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  3. Abstract

    We present maps tracing the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs) in IC 5332, NGC 628, NGC 1365, and NGC 7496 from JWST/MIRI observations. We trace the PAH fraction by combining the F770W (7.7μm) and F1130W (11.3μm) filters to track ionized and neutral PAH emission, respectively, and comparing the PAH emission to F2100W, which traces small, hot dust grains. We find the averageRPAH= (F770W + F1130W)/F2100W values of 3.3, 4.7, 5.1, and 3.6 in IC 5332, NGC 628, NGC 1365, and NGC 7496, respectively. We find that Hiiregions traced by MUSE Hαshow a systematically low PAH fraction. The PAH fraction remains relatively constant across other galactic environments, with slight variations. We use CO+Hi+Hαto trace the interstellar gas phase and find that the PAH fraction decreases above a value ofIHα/ΣHI+H21037.5ergs1kpc2(Mpc2)1in all four galaxies. Radial profiles also show a decreasing PAH fraction with increasing radius, correlated with lower metallicity, in line with previous results showing a strong metallicity dependence to the PAH fraction. Our results suggest that the process of PAH destruction in ionized gas operates similarly across the four targets.

     
    more » « less
  4. Abstract

    We present theDustFilamentscode, a full-sky model for the millimeter Galactic emission of thermal dust. Our model, composed of millions of filaments that are imperfectly aligned with the magnetic field, is able to reproduce the main features of the dust angular power spectra at 353 GHz as measured by the Planck mission. Our model is made up of a population of filaments with sizes following a Pareto distributionLa2.445, with an axis ratio between short and long semiaxesϵ∼ 0.16 and an angle of magnetic field misalignment with a dispersion rms(θLH) = 10°. On large scales, our model follows a Planck-based template. On small scales, our model produces spectra that behave like power laws up to∼ 4000 or smaller scales by considering even smaller filaments, limited only by computing power. We can produce any number of Monte Carlo realizations of small-scale Galactic dust. Our model will allow tests of how the small-scale non-Gaussianity affects CMB weak lensing and the consequences for the measurement of primordial gravitational waves or relativistic light relic species. Our model also can generate frequency decorrelation on the modified blackbody spectrum of dust and is freely adjustable to different levels of decorrelation. This can be used to test the performance of component separation methods and the impact of frequency spectrum residuals on primordialB-mode surveys. The filament density we paint in the sky is also able to reproduce the general level of non-Gaussianities measured by Minkowski functionals in the Planck 353 GHz channel map.

     
    more » « less
  5. Abstract

    We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σsignificance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofAlens= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model andAlens= 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combinationS8CMBLσ8Ωm/0.30.25ofS8CMBL=0.818±0.022from ACT DR6 CMB lensing alone andS8CMBL=0.813±0.018when combining ACT DR6 and PlanckNPIPECMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.

     
    more » « less