skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins
Abstract Motivation The success of genome sequencing techniques has resulted in rapid explosion of protein sequences. Collections of multiple homologous sequences can provide critical information to the modeling of structure and function of unknown proteins. There are however no standard and efficient pipeline available for sensitive multiple sequence alignment (MSA) collection. This is particularly challenging when large whole-genome and metagenome databases are involved. Results We developed DeepMSA, a new open-source method for sensitive MSA construction, which has homologous sequences and alignments created from multi-sources of whole-genome and metagenome databases through complementary hidden Markov model algorithms. The practical usefulness of the pipeline was examined in three large-scale benchmark experiments based on 614 non-redundant proteins. First, DeepMSA was utilized to generate MSAs for residue-level contact prediction by six coevolution and deep learning-based programs, which resulted in an accuracy increase in long-range contacts by up to 24.4% compared to the default programs. Next, multiple threading programs are performed for homologous structure identification, where the average TM-score of the template alignments has over 7.5% increases with the use of the new DeepMSA profiles. Finally, DeepMSA was used for secondary structure prediction and resulted in statistically significant improvements in the Q3 accuracy. It is noted that all these improvements were achieved without re-training the parameters and neural-network models, demonstrating the robustness and general usefulness of the DeepMSA in protein structural bioinformatics applications, especially for targets without homologous templates in the PDB library. Availability and implementation https://zhanglab.ccmb.med.umich.edu/DeepMSA/. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1901191
NSF-PAR ID:
10167313
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Bioinformatics
Volume:
36
Issue:
7
ISSN:
1367-4803
Page Range / eLocation ID:
2105 to 2112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the results of residue‐residue contact prediction of a new pipeline built purely on the learning of coevolutionary features in the CASP13 experiment. For a query sequence, the pipeline starts with the collection of multiple sequence alignments (MSAs) from multiple genome and metagenome sequence databases using two complementary Hidden Markov Model (HMM)‐based searching tools. Three profile matrices, built on covariance, precision, and pseudolikelihood maximization respectively, are then created from the MSAs, which are used as the input features of a deep residual convolutional neural network architecture for contact‐map training and prediction. Two ensembling strategies have been proposed to integrate the matrix features through end‐to‐end training and stacking, resulting in two complementary programs called TripletRes and ResTriplet, respectively. For the 31 free‐modeling domains that do not have homologous templates in the PDB, TripletRes and ResTriplet generated comparable results with an average accuracy of 0.640 and 0.646, respectively, for the topL/5 long‐range predictions, where 71% and 74% of the cases have an accuracy above 0.5. Detailed data analyses showed that the strength of the pipeline is due to the sensitive MSA construction and the advanced strategies for coevolutionary feature ensembling. Domain splitting was also found to help enhance the contact prediction performance. Nevertheless, contact models for tail regions, which often involve a high number of alignment gaps, and for targets with few homologous sequences are still suboptimal. Development of new approaches where the model is specifically trained on these regions and targets might help address these problems.

     
    more » « less
  2. Abstract Motivation

    Multiple sequence alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for.

    Results

    Here, we implement a smooth and differentiable version of the Smith–Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully understood.

    Availability and implementation

    Our code and examples are available at: https://github.com/spetti/SMURF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Kolodny, Rachel (Ed.)
    The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top- L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top- L /5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library. 
    more » « less
  4. Ponty, Yann (Ed.)
    Abstract Motivation Detecting subtle biologically relevant patterns in protein sequences often requires the construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few sequences and are therefore inappropriate when dealing with large numbers of proteins. Results eCOMPASS addresses this problem using a statistical measure of relative alignment quality based on direct coupling analysis (DCA): To maintain protein structural integrity over evolutionary time, substitutions at one residue position typically result in compensating substitutions at other positions. eCOMPASS computes the statistical significance of the congruence between high scoring directly coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned homologous residues. We illustrate eCOMPASS using both simulated and real MSAs. Availability and Implementation The eCOMPASS executable, C ++ open source code and input data sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Motivation Deep learning has become the dominant technology for protein contact prediction. However, the factors that affect the performance of deep learning in contact prediction have not been systematically investigated. Results We analyzed the results of our three deep learning-based contact prediction methods (MULTICOM-CLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 targets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact prediction than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage points. We also tested different alignment methods and domain-based contact prediction with the deep learning contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration of domain-based contact prediction with the full-length contact prediction improved the performance of contact prediction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to improve contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple distance intervals could capture more structural information and improve binary contact prediction. Availability and implementation https://github.com/multicom-toolbox/DNCON2/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less