skip to main content

This content will become publicly available on December 28, 2024

Title: PDO and AMO Modulation of the ENSO–Asian Summer Monsoon Teleconnection During the Last Millennium

Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.

    more » « less
  2. Abstract

    The Asian summer monsoon (ASM) is teleconnected to the El Niño Southern Oscillation (ENSO), but this relationship is nonstationary and has shifted significantly in recent decades. Characterizing the drivers of such shifts is crucial for improving ASM prediction and extreme event preparedness. Paleoclimate records indicate a link between ASM strength and solar activity on multidecadal‐to‐centennial timescales, but 20th‐century data are too short to test mechanisms. Here we evaluate how solar irradiance influences the ASM‐ENSO relationship using last‐millennium paleoclimate data assimilation reconstructions and model simulations. We find that high solar irradiance weakens the ENSO‐East Asian summer monsoon (EASM) correlation, but strengthens the ENSO‐South Asian summer monsoon (SASM) correlation. Solar irradiance likely influences the strength of the ENSO‐EASM and ENSO‐SASM teleconnections via changes in the Western Pacific Subtropical High and the amplitude of ENSO events, respectively. We suggest a need for considering solar activity in decadal ASM rainfall predictions under global warming scenarios.

    more » « less
  3. Abstract

    Natural and social systems worldwide are impacted by climate modes such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), making it imperative to understand their sensitivity to climate change. Paleoclimate studies extend the observational climate baseline, and speleothem records (δ18Ospel) are a common data source. However, relationships between δ18Ospeland climate modes are uncertain; climate models provide a way to test the strength and stability of these relationships. Here, we use the isotope‐enabled Community Earth System Model's Last Millennium Ensemble combined with a forward proxy model to delineate the global expression of modal variability in “pseudo‐stalagmite” (δ18Ospel) records worldwide. The modeled δ18Ospelspatially correlates with modal signatures. However, substantial changes in modal variance only modestly affect individual δ18Ospelvariance. A network of δ18Ospelrecords, particularly one that straddles the Pacific, significantly improves the reconstructability of ENSO variance.

    more » « less
  4. Drought variability is associated with global oceanic and atmospheric teleconnections driven by, among others, the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO), and El Niño–Southern Oscillation (ENSO). Climate teleconnections with a region’s rainfall, with drought and flooding implications, should be part of short- and long-term water management planning and operations. In this study, the link between drought and climatic drivers was assessed by using historical data from 110 years of regional rainfall in southern Florida and the Everglades. The objective was to evaluate historical drought and its link with global oceanic and atmospheric teleconnections. The Standardized Precipitation Index (SPI) assesses regional historical drought in 3-, 6-, 12-, 24-, 36-, 48-, and 60-month periods. Each of the SPIs was used to analyze the association of different magnitudes of drought with ENSO, AMO, and PDO. Historical drought evaluated in different time windows indicated that there is a wet and dry cycle in the regional hydrology, where the area is currently in the wet phase of the fluctuation since 1995 with some drought years in between. Regional historical rainfall anomaly and drought index relationships with each driver and combination of drivers were statistically evaluated. The impact of ENSO fluctuation is limited to short-period rainfall variability, whereas long-period influence is from AMO and PDO. 
    more » « less
  5. Abstract

    Synchronous pulses of seed masting and natural disturbance have positive feedbacks on the reproduction of masting species in disturbance‐prone ecosystems. We test the hypotheses that disturbances and proximate causes of masting are correlated, and that their large‐scale synchrony is driven by similar climate teleconnection patterns at both inter‐annual and decadal time scales.

    Hypotheses were tested on white spruce (Picea glauca), a masting species which surprisingly persists in fire‐prone boreal forests while lacking clear fire adaptations. We built masting, drought and fire indices at regional (Alaska, Yukon, Alberta, Quebec) and sub‐continental scales (western North America) spanning the second half of the 20th century. Superposed Epoch Analysis tested the temporal associations between masting events, drought and burnt area at the regional scale. At the sub‐continental scale, Superposed Epoch Analysis tested whether El Niño‐Southern Oscillation (ENSO) and its coupled effects with the Atlantic Multidecadal Oscillation (AMO) in the positive phase (AMO+/ENSO+) synchronize drought, burnt area and masting. We additionally tested the consistency of our synchronization hypotheses on a decadal temporal scale to verify whether long‐term oscillations in AMO+/ENSO+ are coherent to decadal variation in drought, burnt area and masting.

    Analyses demonstrated synchronicity between drought, fire and masting. In all regions the year before a mast event was drier and more fire‐prone than usual. During AMO+/ENSO+ events sub‐continental indices of drought and burnt area experienced significant departures from mean values. The same was observed for large‐scale masting in the subsequent year, confirming 1‐year lag between fire and masting. Sub‐continental indices of burnt area and masting showed in‐phase decadal fluctuations led by the AMO+/ENSO+. Results support the ‘Environmental prediction hypothesis’ for mast seeding.

    Synthesis. We provide evidence of large‐scale synchronicity between seed masting inPicea glaucaand fire regimes in boreal forests of western North America at both inter‐annual and decadal time scales. We conclude that seed production in white spruce predicts changes in disturbance regimes by sharing the same large‐scale climate drivers with drought and fire. This gives new insides in a mechanism providing a fire‐sensitive species with higher than expected adaptability to changes in climate.

    more » « less