A<sc>bstract</sc> Differential measurements of Higgs boson production in theτ-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF),VHand$$ t\overline{t}H $$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb−1of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: theSimplified Template Cross-Section(STXS) approach and anUnfolded Fiducial Differentialmeasurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson’s transverse momentum ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ ), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets (mjj). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction formjj> 1.5 TeV and$$ {p}_{\textrm{T}}^{\textrm{H}} $$ > 200 GeV ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ < 200 GeV) is$$ {1.29}_{-0.34}^{+0.39} $$ ($$ {0.12}_{-0.33}^{+0.34} $$ ). This is the first VBF measurement for the higher-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria, and the most precise for the lower-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria. Thefiducialcross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed ∆ϕjjbetween the two leading jets. The measurements have a precision of 30%–50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient$$ {c}_{H\overset{\sim }{W}} $$ .
more »
« less
Initial-site characterization of hydrogen migration following strong-field double-ionization of ethanol
Abstract An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H$${}_{3}^{+}$$ and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.
more »
« less
- Award ID(s):
- 2309192
- PAR ID:
- 10483863
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> ThepT-differential production cross sections of non-prompt D0, D+, and$$ {\textrm{D}}_{\textrm{s}}^{+} $$ mesons originating from beauty-hadron decays are measured in proton–proton collisions at a centre-of-mass energy$$ \sqrt{s} $$ = 13 TeV. The measurements are performed at midrapidity, |y|<0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons,fs/(fu+fd), is found to be 0.114 ± 0.016 (stat.) ± 0.006 (syst.) ± 0.003 (BR) ± 0.003 (extrap.). This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at$$ \sqrt{s} $$ = 5.02 and 13 TeV, showing a hardening of the non-prompt D-mesonpT-differential production cross section at higher$$ \sqrt{s} $$ . Finally, the$$ \textrm{b}\overline{\textrm{b}} $$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ , and$$ {\Lambda}_{\textrm{c}}^{+} $$ hadron measurements, obtaining$$ \textrm{d}\sigma /\textrm{d}y=75.2\pm 3.2\left(\textrm{stat}.\right)\pm 5.2{\left(\textrm{syst}.\right)}_{-3.2}^{+12.3}\left(\textrm{extrap}.\right) $$ μb.more » « less
-
A<sc>bstract</sc> Measurements of the production cross sections of prompt D0, D+, D*+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ , and$$ {\Xi}_{\textrm{c}}^{+} $$ charm hadrons at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios ofpT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x(10−5–10−4). The measurements of$$ {\Lambda}_{\textrm{c}}^{+} $$ ($$ {\Xi}_{\textrm{c}}^{+} $$ ) baryon production extend the measuredpTintervals down topT= 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ ,$$ {\Xi}_{\textrm{c}}^0 $$ and, for the first time,$$ {\Xi}_{\textrm{c}}^{+} $$ , and of the strongly-decaying J/ψmesons. The first measurements of$$ {\Xi}_{\textrm{c}}^{+} $$ and$$ {\Sigma}_{\textrm{c}}^{0,++} $$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e−and ep collisions. The$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.more » « less
-
Abstract We demonstrate that doping hydroxyapatite (HAp) with Cr3+ions induces oxygen vacancies, contributing to paramagnetism. Cathodoluminescence and photoluminescence analyses reveal increased oxygen vacancy formation in$${\text{O}}{\text{H}}^{-}$$ and$${\text{P}}{\text{O}}_{4}^{3-}$$ groups with rising Cr3+concentrations, highlighted by stronger cathodoluminescence emissions at 2.57 and 2.95 eV and the photoluminescence emission at 3.32 eV. Raman spectroscopy shows new modes at 900 and 970 cm−1, indicating distortion of thev1vibrational mode due to Cr3+substitution at Ca(II) sites of the HAp lattice. X-ray photoelectron spectroscopy confirms Cr3+in the HAp:Cr. Magnetometry reveals a shift from diamagnetism in pure HAp to increasing paramagnetism in HAp:Cr with higher Cr3+content, achieving 0.0460 emu/g at 10 kOe with concentrations higher than 2.9 at.%. This paramagnetism is attributed to Cr3+ions and singly ionized oxygen vacancies$$V^{\prime}_{{\text{O}}}$$ aligning along an external magnetic field, with$$V^{\prime}_{{\text{O}}}$$ formation linked to$${\text{PO}}_{4}^{{3}-}$$ replacement by$${\text{PO}}_{3}^{{2}-}$$ in HAp.more » « less
-
A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ .more » « less
An official website of the United States government
