skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rediscovering Practice and Inquiry in Academic Education: Experiences in a European University Environment
I describe the design and implementation of a series of university MSc courses in Switzerland and in Italy on the topic of “Cosmic Structure Formation” whose goal has been to provide to the students a formative experience using interwoven research practice and fundamental scientific content. The course educational framework, which is based on the ISEE Inquiry Framework, emphasizes science, as much in teaching as in research, as a set of practices, re-discovering and actualizing in modern terms the original pivotal role which these practices had in education in ancient times. In particular, the courses focus on formative, intuitive, student-centered and dialogic learning in opposition to the informative, mnemonic, teacher-centered and monologic teaching of frontal lecture-based instruction, which is still the dominant teaching framework in university education, at least in Europe. I describe how course activities are designed in such a way as to mirror authentic research, including all aspects which are usually not practiced in lecture-based courses and “standard” laboratories (e.g., generating and refining questions; making and testing assumptions; developing one’s own research path; and sharing, explaining and justifying ideas and results with peers). Finally, I discuss the major outcomes of the courses and the main challenges which were faced in order to provide to the students a truly transformative experience which could allow them to improve both as learners and future scientific researchers, as well as members of a larger community.  more » « less
Award ID(s):
1743117
PAR ID:
10483880
Author(s) / Creator(s):
Editor(s):
Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
Publisher / Repository:
Institute for Scientist & Engineer Educators (ISEE)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Powell, Roger (Ed.)
    Abstract The teaching practices used in college science classrooms have a profound influence on which students pass their courses (and continue to major in science) and which are ‘weeded out.’ Students from traditionally marginalized backgrounds have lower grades and learning gains compared to their nonmarginalized peers in courses that rely heavily on lecture and high-stakes exams. This achievement gap narrows or disappears when instructors use student-centered, evidence-based teaching practices. These teaching practices can include actions that shape our classroom environment, communicate course material, and assess student learning. In this paper, we provide a summary of the evidence supporting the use of student-centered teaching practices, followed by examples of several effective evidence-based teaching practices that can be integrated into organismal courses. Examples include faculty mindset for inclusion, teaching practices to increase student confidence and to reduce stereotype threat, increasing course structure by spreading points among several different types of activities, several active learning methods, jigsaws, Scientist Spotlights, course-based undergraduate research experiences, and inquiry-based labs. Each example is linked to supporting resources to help instructors easily implement these practices in their classrooms. The American Society of Mammalogists endeavors to be equitable and inclusive through numerous initiatives, and modifying our teaching practices can increase equity and inclusion of future mammalogists into our own classrooms. 
    more » « less
  2. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students' perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students' perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less
  3. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students’ perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students’ perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less
  4. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  5. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis. 
    more » « less