skip to main content


Title: A Rapid and Formative Response by the Engineering Education Faculty to Support the Engineering Faculty and Students Throughout the Extreme Classroom Changes Resulting from the COVID-19 Pandemic
This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis.  more » « less
Award ID(s):
1911375
NSF-PAR ID:
10318500
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miller, Eva (Ed.)
    The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learning employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics. 
    more » « less
  2. Abstract Background

    COVID‐19 has spurred a global crisis that has disrupted everyday lives and impacted the traditional methods, experiences, and abilities of higher education institutions' students, faculty, and staff, especially at Historically Black Colleges and Universities (HBCUs).

    Purpose/Hypothesis

    Given the pressing need demonstrated by the National Academies to advance the utilization of science, technology, engineering, and mathematics (STEM) education at HBCUs, this study aimed to explore the abrupt transition to remote teaching and learning at HBCUs guided by the following research question: How has COVID‐19 impacted the success and persistence of engineering students, faculty, and staff at HBCUs?

    Design/Methods

    Three surveys were developed, tested, piloted, and sent to HBCU stakeholders using a snowball sampling approach via email and social media outreach.

    Results

    Of the 171 student respondents (126 engineering majors), 79% agreed that not being able to access faculty in person affected their academic performance. Additionally, across all HBCU stakeholders' surveys, students had a statistically significant higher response when asked if the transition to virtual learning increased their overall levels of stress and anxiety.

    Conclusions

    During a global pandemic, HBCUs continue to provide a culture of support and inclusion for students, faculty, and staff in engineering. Increased stress levels experienced by students indicate that a safe and adequate transition back to campus is essential for their social and academic persistence. Due to the well‐documented inequities HBCUs faced before the pandemic, the impact of this unprecedented on their continued contributions toward broadening participation in engineering for students should be further explored.

     
    more » « less
  3. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to support the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. The Department is cultivating this culture of “engineering with engineers” through a strong connection to industry, and through changes in the four essential areas of, a shared department vision, faculty, curriculum and supportive policies. This paper reports our continued efforts in these four areas and our measurement of their impact. Shared department vision: During the first year of the project, the department worked together to revise its mission to reflect the goal of fostering engineering identity. From this shared vision, the department aims to build a culture to promote inclusive practices. In the past year during the COVID-19 pandemic, this shared vision continued to guide many acts of care and community building for the department. Faculty: The pandemic prompted faculty to reflect on how they delivered their courses and cared for students. To promote inclusive practice, faculty utilized recorded lectures, online collaboration tools and instant messaging apps to provide multiple ways of communication for students. Although faculty summer immersion had to be postponed due to pandemic, interactions with industry continued in design courses, and via virtual seminars and socials. Efforts were also extended to strengthen connections between the department and recent graduates who just began working in industry and could become mentors for current students. Curriculum: A new curriculum to support the goals of this project was rolled out in the 2019-20 academic year. The pandemic hit right in the middle of the initial implementation of this new curriculum. Therefore, to maintain the essence of the new curriculum that emphasizes hands-on, doing engineering and experiential learning in the remote setting, many adjustments and modifications were made. Although initial evidence indicates the effectiveness of the new courses/curriculum even under remote teaching and learning, there are also many lessons-learned that can be examined for future implementations and modifications of the curriculum. Supportive policies: The department agreed to celebrate various acts of care for students and cares for teaching and learning in Annual Performance Reviews. Faculty also worked with other departments, the college, and the university to develop supportive policies beyond the department. For example, based on the recommendation from the department, the college set up a Student Advocate role who would assist students navigate through any incident that make they feel excluded. The new university tenure and promotion guidelines have just been approved with the support from the faculty in the department. Additionally, the department’s effort of building an inclusive culture is aligned with the university initiative for a reform to emphasize anti-racism curriculum. Details of the action items in each area of change that the department has taken to build this inclusive culture to foster engineering identity are shared in this paper. In addition, research gauging the impact of our efforts are discussed. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less
  4. A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years. 
    more » « less
  5. Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips. We used laboratory grades and a survey to assess differences in student learning and affinity outcomes for in-person and online exercises. Students who completed the in-person exercise earned better scores than their online peers. For example, in Fall 2021, the median lab score for the in-person group was 97.8%, compared to 91.7% for the online group. The in-person group also reported a significant ( p < 0.05) increase in how much they enjoyed learning about water, while online students reported a significant decrease. Online students also reported a significant decrease in how likely they would be to take another class in water or earth sciences. It is unclear whether the in-person exercise had better learning and affinity outcomes because of the hands-on, outdoor qualities of the lab or because the format allowed greater interaction among peers and teaching instructors (TAs). To mitigate disparities in student learning outcomes between the online and in-person course delivery, instructors will implement future changes to the online version of the lab to enhance interactions among students and TAs. 
    more » « less