Title: SiPhyNetwork : An R package for simulating phylogenetic networks
Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context. more »« less
Abstract ThePCMBase Rpackage is a powerful computational tool that enables efficient calculations of likelihoods for a wide range of phylogenetic Gaussian models.Taking advantage of it, we redesigned theRpackagemvSLOUCH.Here, we demonstrate how the new version of the package can be used to thoroughly examine the evolution and adaptation of traits in a large dataset of 1252 vascular plants through the use of multivariate Ornstein–Uhlenbeck processes.The results of our analysis demonstrate the ability of the modelling framework to distinguish between various alternative hypotheses regarding the evolution of functional traits in angiosperms.
Gross, Elizabeth; van Iersel, Leo; Janssen, Remie; Jones, Mark; Long, Colby; Murakami, Yukihiro
(, Journal of Mathematical Biology)
Abstract Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of DNA sequence evolution have been introduced along with model-based methods for reconstructing phylogenetic networks. For these methods to be consistent, the network parameter needs to be identifiable from data generated under the model. Here, we show that the semi-directed network parameter of a triangle-free, level-1 network model with any fixed number of reticulation vertices is generically identifiable under the Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints.
Papadopoulou, Marina; Garnier, Simon; King, Andrew J
(, Methods in Ecology and Evolution)
Abstract Collective motion, that is the coordinated spatial and temporal organisation of individuals, is a core element in the study of collective animal behaviour. The self‐organised properties of how a group moves influence its various behavioural and ecological processes, such as predator–prey dynamics, social foraging and migration. However, little is known about the inter‐ and intra‐specific variation in collective motion. Despite the significant advancement in high‐resolution tracking of multiple individuals within groups, providing collective motion data for animals in the laboratory and the field, a framework to perform quantitative comparisons across species and contexts is lacking.Here, we present theswaRmversepackage. Building on two existing R packages,trackdfandswaRm,swaRmverseenables the identification and analysis of collective motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of comparison across datasets. We describe the package's structure and showcase its functionality using existing datasets from several species and simulated trajectories from an agent‐based model.From positional time‐series data for multiple individuals (x‐y‐t‐id),swaRmverseidentifies events of collective motion based on the distribution of polarisation and group speed. For each event, a suite of validated biologically meaningful metrics are calculated, and events are placed into a ‘swarm space’ through dimensional reduction techniques.Our package provides the first automated pipeline enabling the analysis of data on collective behaviour. The package allows the calculation and use of complex metrics for users without a strong quantitative background and will promote communication and data‐sharing across disciplines, standardising the quantification of collective motion across species and promoting comparative investigations.
Zobitz, John; Ayres, Edward; Werbin, Zoey; Abdi, Ridwan; Ashburner‐Wright, Natalie; Brown, Lillian; Frink‐Sobierajski, Ryan; Lee, Lajntxiag; Mehmeti, Dijonë; Tran, Christina; et al
(, Methods in Ecology and Evolution)
Abstract Accurate quantification of soil carbon fluxes is essential to reduce uncertainty in estimates of the terrestrial carbon sink. However, these fluxes vary over time and across ecosystem types and so, it can be difficult to estimate them accurately across large scales. The flux‐gradient method estimates soil carbon fluxes using co‐located measurements of soil CO2concentration, soil temperature, soil moisture and other soil properties. The National Ecological Observatory Network (NEON) provides such data across 20 ecoclimatic domains spanning the continental U.S., Puerto Rico, Alaska and Hawai‘i.We present an R software package (neonSoilFlux) that acquires soil environmental data to compute half‐hourly soil carbon fluxes for each soil replicate plot at a given terrestrial NEON site. To assess the computed fluxes, we visited six focal NEON sites and measured soil carbon fluxes using a closed‐dynamic chamber approach.Outputs from theneonSoilFluxshowed agreement with measured fluxes (R2between measured andneonSoilFluxoutputs ranging from 0.12 to 0.77 depending on calculation method used); measured outputs generally fell within the range of calculated uncertainties from the gradient method. Calculated fluxes fromneonSoilFluxaggregated to the daily scale exhibited expected site‐specific seasonal patterns.While the flux‐gradient method is broadly effective, its accuracy is highly sensitive to site‐specific inputs, including the extent to which gap‐filing techniques are used to interpolate missing sensor data and to estimates of soil diffusivity and moisture content. Future refinement and validation ofneonSoilFluxoutputs can contribute to existing databases of soil carbon flux measurements, providing near real‐time estimates of a critical component of the terrestrial carbon cycle.
Doser, Jeffrey W; Finley, Andrew O; Kéry, Marc; Zipkin, Elise F
(, Methods in Ecology and Evolution)
Abstract Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities.
Justison, Joshua A., Solis‐Lemus, Claudia, and Heath, Tracy A. SiPhyNetwork : An R package for simulating phylogenetic networks. Retrieved from https://par.nsf.gov/biblio/10483912. Methods in Ecology and Evolution 14.7 Web. doi:10.1111/2041-210X.14116.
Justison, Joshua A., Solis‐Lemus, Claudia, & Heath, Tracy A. SiPhyNetwork : An R package for simulating phylogenetic networks. Methods in Ecology and Evolution, 14 (7). Retrieved from https://par.nsf.gov/biblio/10483912. https://doi.org/10.1111/2041-210X.14116
@article{osti_10483912,
place = {Country unknown/Code not available},
title = {SiPhyNetwork : An R package for simulating phylogenetic networks},
url = {https://par.nsf.gov/biblio/10483912},
DOI = {10.1111/2041-210X.14116},
abstractNote = {Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context.},
journal = {Methods in Ecology and Evolution},
volume = {14},
number = {7},
publisher = {MEE},
author = {Justison, Joshua A. and Solis‐Lemus, Claudia and Heath, Tracy A.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.