skip to main content


Title: Board 110: Work in Progress: Elementary Students’ Disciplinary Talk in a Classroom with an Explicit Engineering Decision-making Scaffold
While engineering grows as a part of elementary education, important questions arise about the skills and practices we ask of students. Both collaboration and decision making are complex and critical to the engineering design process, but come with social and emotional work that can be difficult for elementary students to navigate. Productive engagement in collaborative teams has been seen to be highly variable; for some teams, interpersonal conflicts move the design process forward, while for others they stall the process. In this work in progress, we are investigating the research question, what is the nature of students’ disciplinary talk during scaffolded decision making? We explore this research question via a case study of one student group in a 4th-grade classroom enrolled in an outreach program run by a private university in a Northeastern city. This program sends pairs of university students into local elementary schools to facilitate engineering in the classroom for one hour per week. This is the only engineering instruction the elementary students receive and the engineering curriculum is planned by the university students. For the implementation examined in this study, the curriculum was designed by two researchers to scaffold collaborative groupwork and decision making. The instruction was provided by an undergraduate and one of the researchers, a graduate student. The scaffolds designed for this semester of outreach include a set of groupwork norms and a decision matrix. The groupwork norms were introduced on the first day of instruction; the instructors read them aloud, proposed groupwork scenarios to facilitate a whole class discussion about whether or not the norms were followed and how the students could act to follow the norms, and provided time for students to practice the norms in their engineering design groups for the first project. For the rest of the semester, an anchor chart of the norms was displayed in the classroom and referenced to encourage consensus. The researchers designed the decision matrix scaffold to encourage design decisions between multiple prototypes based on problem criteria and test results. Instructors modeled the use of this decision matrix on the third day of instruction, and students utilized the matrix in both design projects of the semester. Data sources for this descriptive study include students’ written artifacts, photos of their design constructions, and video records of whole-class and team discourse. We employ qualitative case study and microethnographic analysis techniques to explore the influence of the intentional discourse scaffolds on students’ collaborative and decision-making practices. Our analysis allowed us to characterize the linguistic resources (including the decision matrix) that the students used to complete four social acts during decision making: design evaluation, disagreeing with a teammate, arguing for a novel idea, and sympathizing with a design. This research has implications for the design of instructional scaffolds for engineering curricula at the elementary school level, whether taking place in an outreach program or in regular classroom instruction.  more » « less
Award ID(s):
1657509
NSF-PAR ID:
10483922
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Subject(s) / Keyword(s):
["pre-college engineering education, engineering curricula"]
Format(s):
Medium: X
Location:
Tampa, Florida
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering outreach programs have the potential to significantly influence precollege youth; university-led engineering programs reach approximately 600,000 K-12 students each year in the United States. Despite the prevalence of these outreach programs, little is known about the nature of the discursive interactions between outreach ambassadors and participating youths and the ways in which these interactions support youths’ progress in engineering. Understanding the ways in which outreach ambassadors support youth to learn engineering is critical to furthering the effectiveness of these programs and contributes to greater understanding about how to support engineering in K-12 settings. Often, these programs are facilitated by undergraduate and graduate engineering ambassadors who themselves are developing as engineers and educators. In the context of an engineering outreach program for elementary students, this study examines the teaching moves of outreach ambassadors, adds to the understanding of their teaching moves, and offers preliminary conjectures about the impact of these moves on students. This study asks: What kinds of discursive teaching moves do outreach ambassadors enact when interacting with elementary student design teams?  In the focal outreach program, pairs of university students facilitated engineering design challenges in elementary classrooms for one hour each week throughout the school year. We selectively sampled and analyzed four such sessions in four fourth- and fifth-grade classrooms. We used discourse analysis and a lens of ambitious teaching to classify the teaching moves employed during interactions between ambassadors and small groups of students who were engaged in engineering design challenges. We identified a range of moves, including ambitious, inclusive, and conservative teaching moves, across the four sessions. From class to class, we observed variation in distribution of each category of teaching move and we hypothesize that activity design and outreach ambassador orientations toward teaching influence this variation.   Particularly promising for engineering teaching and learning, we observed ambassadors making bids to elicit student ideas, pressing for evidence-based explanations, and revoicing students’ design ideas. These moves are characteristic of ambitious instruction and have the potential to support students to engage in reflective decision-making and to guide students toward productive, more expert engineering design practices. Our analysis suggests that engineering outreach ambassadors notice and respond to students’ ideas, engaging in ambitious teaching practices which can be expected to support elementary students in making progress in engineering design. This analysis of outreach ambassadors’ discursive interactions with elementary student design teams adds to the growing conversation of ambitious instruction in engineering. 
    more » « less
  2. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less
  3. Abstract Background

    A key feature of engineering design is collaborative, deliberate decision making that takes into account information about design options. K‐12 students need opportunities for this kind of decision making if they are to meet the learning standards for engineering set out in the Next Generation Science Standards.

    Purpose

    This qualitative study sought to propose and operationalize a definition of reflective decision‐making among elementary students. We investigated how urban elementary students enact reflective decision‐making in a formal engineering design curriculum.

    Method

    We used naturalistic inquiry methodology and video recorded seven Engineering is Elementary design challenges in four classrooms. Students worked in small teams, and we focused on their planning and redesign phases. Maximum variation sampling, constant comparative analysis, and microethnographic accounts demonstrated the diversity of resources students utilized in their decision making.

    Results

    In student discourse, we found evidence for six reflective decision‐making elements: articulating multiple solutions, evaluating pros and cons, intentionally selecting a solution, retelling the performance of a solution, analyzing a solution according to evidence, and purposefully choosing improvements. The discourse patterns used to enact these elements both supported and interfered with students' achievement of design goals.

    Conclusions

    Our results suggest that during engineering design tasks, young learners working in small teams can respond productively to opportunities to engage in sophisticated discourse. However, further work is needed on tools and strategies that support reflective decision‐making by all students during engineering design in elementary school.

     
    more » « less
  4. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less
  5. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less