skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Characterizing Engineering Outreach Ambassadors' Teaching Moves during Engineering Design Activities (Fundamental)
Engineering outreach programs have the potential to significantly influence precollege youth; university-led engineering programs reach approximately 600,000 K-12 students each year in the United States. Despite the prevalence of these outreach programs, little is known about the nature of the discursive interactions between outreach ambassadors and participating youths and the ways in which these interactions support youths’ progress in engineering. Understanding the ways in which outreach ambassadors support youth to learn engineering is critical to furthering the effectiveness of these programs and contributes to greater understanding about how to support engineering in K-12 settings. Often, these programs are facilitated by undergraduate and graduate engineering ambassadors who themselves are developing as engineers and educators. In the context of an engineering outreach program for elementary students, this study examines the teaching moves of outreach ambassadors, adds to the understanding of their teaching moves, and offers preliminary conjectures about the impact of these moves on students. This study asks: What kinds of discursive teaching moves do outreach ambassadors enact when interacting with elementary student design teams?  In the focal outreach program, pairs of university students facilitated engineering design challenges in elementary classrooms for one hour each week throughout the school year. We selectively sampled and analyzed four such sessions in four fourth- and fifth-grade classrooms. We used discourse analysis and a lens of ambitious teaching to classify the teaching moves employed during interactions between ambassadors and small groups of students who were engaged in engineering design challenges. We identified a range of moves, including ambitious, inclusive, and conservative teaching moves, across the four sessions. From class to class, we observed variation in distribution of each category of teaching move and we hypothesize that activity design and outreach ambassador orientations toward teaching influence this variation.   Particularly promising for engineering teaching and learning, we observed ambassadors making bids to elicit student ideas, pressing for evidence-based explanations, and revoicing students’ design ideas. These moves are characteristic of ambitious instruction and have the potential to support students to engage in reflective decision-making and to guide students toward productive, more expert engineering design practices. Our analysis suggests that engineering outreach ambassadors notice and respond to students’ ideas, engaging in ambitious teaching practices which can be expected to support elementary students in making progress in engineering design. This analysis of outreach ambassadors’ discursive interactions with elementary student design teams adds to the growing conversation of ambitious instruction in engineering.  more » « less
Award ID(s):
1657509 1657519
PAR ID:
10197018
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
American Society of Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less
  2. Abstract

    As engineering learning experiences increasingly begin in elementary school, elementary teacher preparation programs are an important site for the study of teacher development in engineering education. In this article, we argue that the stances that novice teachers adopt toward engineering learning and knowledge are consequential for the opportunities they create for students. We present a comparative case study examining the epistemological framing dynamics of two novice urban teachers, Ana and Ben, as they learned and taught engineering design during a four‐week institute for new elementary teachers. Although the two teachers had very similar teacher preparation backgrounds, they interpreted the purposes of engineering design learning and teaching in meaningfully different ways. During her own engineering sessions, Ana took up the goal not only of meeting the needs of the client but also of making scientific sense of artifacts that might meet those needs. When facilitating students' engineering, she prioritized their building knowledge collaboratively about how things work. By contrast, when Ben worked on his own engineering, he took up the goal of delivering a product. When teaching engineering to students, he offered them constrained prototyping tasks to serve as hands‐on contexts for reviewing scientific explanations. These findings call for teacher educators to support teachers' framing of engineering design as a knowledge building enterprise through explicit conversations about epistemology, apprenticeship in sense‐making strategies, and tasks intentionally designed to encourage reasoning about design artifacts.

     
    more » « less
  3. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities. 
    more » « less
  4. As educators strive to broaden representation in engineering, it is important to take into account how youth perceive themselves in relation to engineering careers. Youth as young as ten years of age are assessing the appeal and achievability of engineering as a career. This study explores preadolescents’ perceptions of the desirability of engineering careers and the self-assessed characteristics which impact students’ interest in engineering. In particular, this work unpacks what attracts elementary students to engineering careers and what these students believe it takes to be an engineer. Drawing from a set of 56 student interviews, this work addresses the research question In what ways are elementary school students thinking about careers in engineering? Existing research indicates that students’ interest in engineering careers declines as students enter middle school; this study contributes to understanding influences on students’ interests when they are on the cusp of deciding whether to pursue engineering study and careers. As part of a study of a university-led engineering education outreach program in elementary classrooms, 5th grade students participated in 15- to 30-minute semi-structured interviews near the end of the academic year. Participants represented four classrooms in two suburban schools in the northeastern United States that had each engaged in 16-18 weeks of hands-on engineering activities led by undergraduate engineering students. Interviews focused on the students’ experiences with engineering and the engineering intervention, students’ role models, and students’ career aspirations. We utilized open coding to analyze the interviews and identified the keywords and themes that students used to describe why an engineering career would be appealing or unappealing and possible or impossible for them. Two themes characterized the interview data; these students’ receptivity to pursuing engineering careers appeared to be mediated by conceptions of engineering careers as involving skill (in idea generation or in creation of technology) or desire (the will to do engineering). This paper utilizes interview data to attend to students’ perspectives and expand our understanding of barriers and gateways to student interest in engineering study and careers. It also discusses the implications of the findings for teaching engineering with an eye on the messages conveyed about the nature of engineering practices, the characteristics of engineers, and how students’ interests intersect with engineering careers. 
    more » « less
  5. Abstract

    Engineering design learning experiences are increasingly offered as part of elementary school, but research on how to support young learners’ knowledge construction during classroom engineering is still preliminary. Questions remain about how classroom supports can make engineering thinking visible so that students build engineeringknowledgealong with engineeringproducts. We report results from a case study of an 11‐day teaching experiment in two elementary classrooms. With the classroom teachers, we guided fourth and fifth graders to document their design iterations with a digital notebooking tool, participate in whole‐class design talks, and create and exhibit posters with “stomp rocket” design recommendations. We conducted a microethnographic analysis of students’ interactions with these notebooking, talk, and poster tools. Our findings characterize how students constructed engineering design knowledge through the discourse of sense‐making about rocket phenomena, decision‐making for specific rocket iterations, and representation‐making for external audiences. These results have implications for elementary engineering instruction: it appears productive for learning to structure whole‐class design talks aroundrepresentationsofsequencesof prototypes over time, rather than focusing only on current or best physical prototypes, and to structure engineering curriculum units so that they culminate with student‐generated sets of designrecommendations, rather than single design solutions.

     
    more » « less