skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fifty Three Matrix Factorizations: A Systematic Approach
The success of matrix factorizations such as the singular value decomposition (SVD)has motivated the search for even more factorizations. We catalog 53 matrix factorizations, most ofwhich we believe to be new. Our systematic approach, inspired by the generalized Cartan decom-position of the Lie theory, also encompasses known factorizations such as the SVD, the symmetriceigendecomposition, the CS decomposition, the hyperbolic SVD, structured SVDs, the Takagi factor-ization, and others thereby covering familiar matrix factorizations, as well as ones that were waitingto be discovered. We suggest that the Lie theory has one way or another been lurking hidden in thefoundations of the very successful field of matrix computations with applications routinely used in somany areas of computation. In this paper, we investigate consequences of the Cartan decompositionand the little known generalized Cartan decomposition for matrix factorizations. We believe thatthese factorizations once properly identified can lead to further work on algorithmic computationsand applications.  more » « less
Award ID(s):
2029670
PAR ID:
10483970
Author(s) / Creator(s):
;
Publisher / Repository:
SIAM Journal on Matrix Analysis and Applications
Date Published:
Journal Name:
SIAM Journal on Matrix Analysis and Applications
Volume:
44
Issue:
2
ISSN:
0895-4798
Page Range / eLocation ID:
415 to 480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We complete Dyson’s dream by cementing the links between symmetric spaces and classical random matrix ensembles. Previous work has focused on a one-to-one correspondence between symmetric spaces and many but not all of the classical random matrix ensembles. This work shows that we can completely capture all of the classical random matrix ensembles from Cartan’s symmetric spaces through the use of alternative coordinate systems. In the end, we have to let go of the notion of a one-to-one correspondence. We emphasize that the KAK decomposition traditionally favored by mathematicians is merely one coordinate system on the symmetric space, albeit a beautiful one. However, other matrix factorizations, especially the generalized singular value decomposition from numerical linear algebra, reveal themselves to be perfectly valid coordinate systems that one symmetric space can lead to many classical random matrix theories. We establish the connection between this numerical linear algebra viewpoint and the theory of generalized Cartan decompositions. This, in turn, allows us to produce yet more random matrix theories from a single symmetric space. Yet, again, these random matrix theories arise from matrix factorizations, though ones that we are not aware have appeared in the literature. 
    more » « less
  2. Quantum algorithms usually are described via quantum circuits representable as unitary operators. Synthesizing the unitary operators described mathematically in terms of the unitary operators recognizable as quantum circuits is essential. One such a challenge lies in the Hamiltonian simulation problem, where the matrix exponential of a large-scale skew-Hermitian matrix is to be computed. Most current techniques are prone to approximation errors, whereas the parametrization of the underlying Hamiltonian via the Cartan decomposition is more promising. To prepare for such a simulation, this work proposes to tackle the Cartan decomposition by means of the Lax dynamics. The advantages include not only that it is numerically feasible with no matrices involved, but also that this approach offers a genuine unitary synthesis within the integration errors. This work contributes to the theoretic and algorithmic foundations in three aspects: exploiting the quaternary representation of Hamiltonian subalgebras; describing a common mechanism for deriving the Lax dynamics; and providing a mathematical theory of convergence. 
    more » « less
  3. Abstract It is now well-known that Newton–Cartan theory is the correct geometrical setting for modelling the quantum Hall effect. In addition, in recent years edge modes for the Newton–Cartan quantum Hall effect have been derived. However, the existence of these edge modes has, as of yet, been derived using only orthodox methodologies involving the breaking of gauge-invariance; it would be preferable to derive the existence of such edge modes in a gauge-invariant manner. In this article, we employ recent work by Donnelly and Freidel in order to accomplish exactly this task. Our results agree with known physics, but afford greater conceptual insight into the existence of these edge modes: in particular, they connect them to subtle aspects of Newton–Cartan geometry and pave the way for further applications of Newton–Cartan theory in condensed matter physics. 
    more » « less
  4. Abstract Consider a pair of elementsfandgin a commutative ringQ. Given a matrix factorization offand another ofg, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum$$f+g$$. We will study the tensor product ofd-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form. 
    more » « less
  5. QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $$A \in \Z^{m \times n}$$ as $A=QDR$, where $$Q \in \Z^{m \times m}$$ has pairwise orthogonal columns, $$D$$ is a diagonal matrix, and $$R \in \Z^{m \times n}$$ is an upper trapezoidal matrix; notably, the entries of $$Q$$ and $$R$$ are integral, while the entries of $$D$$ are reciprocals of integers. In the thin REF QR factorization, $$Q \in \Z^{m \times n}$$ also has pairwise orthogonal columns, and $$R \in \Z^{n \times n}$$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $$x$$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix). 
    more » « less