Lithium–sulfur (Li–S) batteries are regarded as one of the most promising next-generation electrochemical cells. However, shuttling of lithium polysulfide intermediates and sluggish kinetics in random deposition of lithium sulfide (Li 2 S) have significantly degraded their capacity, rate and cycling performance. Herein, few-layered MoS 2 nanosheets enriched with sulfur vacancies are anchored inside hollow mesoporous carbon (MoS 2−x /HMC) via S–C bonding and proposed as a novel functional mediator for Li–S batteries. Ultrathin MoS 2 sheets with abundant sulfur vacancies have strong chemical affinity to polysulfides and in the meantime catalyze their fast redox conversion with enhanced reaction kinetics as proved by experimental observations and first-principles density functional theory (DFT) calculations. At a current density of 1C, the MoS 2−x /HMC-S composite cathode exhibits a high initial capacity of 945 mA h g −1 with a high retained capacity of 526 mA h g −1 and a coulombic efficiency of nearly 100% after 500 cycles. The present work sheds light on the design of novel functional electrodes for next-generation electrochemical cells based on a simple yet effective vacancy engineering strategy.
more »
« less
Mechanism and Kinetics of Na 2 S x (x ≤ 2) Precipitation in Sodium-Sulfur and Sodium/(Oxygen)-Sulfur Batteries
Room-temperature sodium-sulfur (RT Na-S) batteries have attracted ever-increasing attention because of their enhanced energy density and low price. Although the performance of RT Na-S batteries is obtained in many other research, the basic mechanism and kinetics have not involved yet, especially in discharge product growth, which affects electrochemical performance. Meanwhile, designed additional redox activities (in the presence of oxygen) could simultaneously suppress sodium polysulfide shuttling and enhance energy density according to our group reported. However, the kinetic study of the intermediate has not been explored. In this work, we discussed the deposition of low-order sodium polysulfide (Na2Sx, x ≤ 2) in different potentials and types of glyme-solvents in Na-S and Na/(O2)-S system. The results show that the morphology of deposition Na2Sx(x ≤ 2) is affected by interfacial energy barrier controlled by overpotentials and the radius of sodium ions, which produced the precipitation of particle shape rather than film. Potentiostatic experiments show the kinetics are elevated in the presence of oxygen. In addition, the exchange current density of different sodium polysulfides was studied. The high-order sodium polysulfide has a lower exchange current density than that of low-order sodium polysulfide in Na-S system, requiring greater driving force, while transformation of the intermediate from high-order oxy-sulfur to low-order oxy-sulfur species require less impulse in Na/(O2)-S systems. This paper provides new understandings of the deposition mechanism and kinetics of Na2Sx(x ≤ 2) Na-S and Na/(O2)-S system in and to choose the appropriate solvent and potential.
more »
« less
- Award ID(s):
- 2110201
- PAR ID:
- 10484066
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 171
- Issue:
- 1
- ISSN:
- 0013-4651
- Format(s):
- Medium: X Size: Article No. 010503
- Size(s):
- Article No. 010503
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sulfur and selenium based rechargeable batteries have attracted great attention due to their high gravimetric/volumetric energy densities owing to multielectron conversion reactions. Over the last few years, rationally designed nanomaterials have played a crucial role in the continuous growth of these battery systems. In this context, electrospun nanostructures are of paramount interest for the development of these rechargeable secondary batteries due to their high surface area to volume ratio and good mechanical stability. Here, a systematic and comprehensive review of the recent advances in the development of electrospun nanostructures as novel materials for next generation sulfur and selenium based lithium and sodium batteries is presented. In this review, we highlight the recent progress made in Li–S, RT Na–S, Li–S x Se y , RT Na–S x Se y , Li–Se and RT Na–Se batteries using electrospun carbon, polymers or heterostructures with tailored textural properties, compositions and surface functionalities (polysulfide trapping capability and catalytic activity) in cathodes, interlayers, separator coatings, and electrolyte membranes. The emphasis is placed on various synthesis strategies to design advanced electrospun nanostructures with tunable structural properties and the impact of these features on capacity, rate capability and long-term cycling. Moreover, we have introduced the ‘fraction of (electrochemically) active cathode (FAC)’ as a parameter to highlight the advantages of free-standing electrospun nanostructures compared to their non-electrospun or slurry-cast electrospun counterparts. Furthermore, current challenges and prospects in the use of electrospun nanostructures in each battery system are also discussed. We believe that this review will provide new opportunities in the field of advanced sulfur and selenium based rechargeable batteries using electrospun nanostructures.more » « less
-
Abstract This is the first report of molybdenum carbide‐based electrocatalyst for sulfur‐based sodium‐metal batteries. MoC/Mo2C is in situ grown on nitrogen‐doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide–porous carbon nanotubes host (MoC/Mo2C@PCNT–S). Quasi‐solid‐state phase transformation to Na2S is promoted in carbonate electrolyte, with in situ time‐resolved Raman, X‐ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2C@PCNT–S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g−1at 1 A g−1, 818 mAh g−1at 3 A g−1, and 621 mAh g−1at 5 A g−1. The cells deliver superior cycling stability, retaining 650 mAh g−1after 1000 cycles at 1.5 A g−1, corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm−2) also show cycling stability. Density functional theory demonstrates that formation energy of Na2Sx(1 ≤x ≤ 4) on surface of MoC/Mo2C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2Sx(1 ≤x ≤ 4) on MoC/Mo2C surfaces results from charge transfer between the sulfur and Mo sites on carbides’ surface.more » « less
-
Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na 3 PS 4− x O x , where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na 3 PS 4− x O x SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.more » « less
-
Li–S batteries have attracted great attention for their combined advantages of potentially high energy density and low cost. To tackle the capacity fade from polysulfide dissolution, we have developed a confinement approach by in situ encapsulating sulfur with a MOF-derived CoS 2 in a carbon framework (S/Z-CoS 2 ), which in turn was derived from a sulfur/ZIF-67 composite (S/ZIF-67) via heat treatment. The formation of CoS 2 was confirmed by X-ray absorption spectroscopy (XAS) and its microstructure and chemical composition were examined through cryogenic scanning/transmission electron microscopy (Cryo-S/TEM) imaging with energy dispersive spectroscopy (EDX). Quantitative EDX suggests that sulfur resides inside the cages, rather than externally. S/hollow ZIF-67-derived CoS 2 (S/H-CoS 2 ) was rationally designed to serve as a control material to explore the efficiency of such hollow structures. Cryo-STEM-EDX mapping indicates that the majority of sulfur in S/H-CoS 2 stays outside of the host, despite its high void volumetric fraction of ∼85%. The S/Z-CoS 2 composite exhibited highly improved battery performance, when compared to both S/ZIF-67 and S/H-CoS 2 , due to both the efficient physical confinement of sulfur inside the host and strong chemical interactions between CoS 2 and sulfur/polysulfides. Electrochemical kinetics investigations revealed that the CoS 2 could serve as an electrocatalyst to accelerate the redox reactions. The composite could provide an areal capacity of 2.2 mA h cm −2 after 150 cycles at 0.2C and 1.5 mA h cm −2 at 1C. This novel material provides valuable insights for further development of high-energy, high-rate and long-life Li–S batteries.more » « less