- Award ID(s):
- 1743117
- NSF-PAR ID:
- 10484106
- Editor(s):
- Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
- Publisher / Repository:
- Institute for Scientist & Engineer Educators (ISEE)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In engineering education, laboratory learning that is well aligned with core content knowledge is instrumental as it plays a significant role in students’ knowledge construction, application, and distribution. Learning in laboratories is interactive in nature, and therefore students who learn engineering through online platforms can face many challenges with labs, which were frequently documented during the recent pandemic. To address those reported challenges, innovative online lab learning modules were developed and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Microcomputers I, through which students gain solid foundation before students take on senior design projects. Lab modules with open-ended design learning experience through using a lab-in-a-box approach were developed to allow students to solve lab problems with multiple approaches that allow problem solving independently and collaboratively. Because this innovative lab design allows problem solving at various cognitive levels, it is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a “cookbook” approach that tend to lead students to follow certain procedures for expected solutions with the absence of problem exploration stage. In addition to the open-ended lab modules, course instructors formed online lab groups through which students shared the entire problem-solving process from ideas formation to solutions through trial and error. To investigate the effectiveness of the open-ended online lab learning experiences, students in all courses were randomly divided into experimental and control groups. Students in the control group learned in labs through learning materials that are aligned with core concepts by following a completed given procedures students in the experimental group learned through inquiry-based labs learning materials that required them to work in teams by integrating core concepts together to find solutions with multiple approaches. To maximize the online lab learning effect and to replicate the way industry, commerce and research practice, instructor structured cooperative learning strategies were applied along with pre-lab simulations and videos. The research results showed that generally students in the experimental group outperformed their counterparts in labs especially with more advanced concept understanding and applications, but showed mixed results for the overall class performance based on their course learning outcomes such as quizzes, lab reports, and tests. Further, survey results showed that 72% of students reported open-ended lab learning helped them learn better. According to interviews, the initial stage of working with team members was somewhat challenging from difficulties in finding time to work together for discussion and problem solving. Yet, through many communication tools, such as course LMS and mobile apps they were able to collaborate in lab problems, which also led them to build learning communities that went beyond the courses.more » « less
-
Laboratory experience is among the key components in engineering education. It is highly instrumental and plays a significant role in students’ knowledge building, application, and distribution. Learning in laboratories is interactive and often collaborative. On the other hand, students, who learn engineering through online mechanisms, may face challenges with labs, which were frequently documented during the recent pandemic. To address such challenges, innovative online lab learning modules were developed, and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Embedded System, through which students gain solid foundation before advancing to senior design projects. The two main incorporated strategies were Open-Ended lab design and Teamwork implementation. Open-Ended lab modules using a lab-in-a-box approach allow students solving lab problems with multiple approaches fostering problem solving both independently and collaboratively. This innovative lab design promotes problem solving at various cognitive levels. It is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a prescribed approach leading students to follow certain procedures that may lack the problem exploration stage. Additionally, course instructors formed online lab groups, so that students were sharing the problem-solving process – from ideas formation to solutions – with their peers. To evaluate the effectiveness of the implemented lab strategies, students in the participating courses were randomly divided into experimental and control groups. Both assignment grades and students' feedback via surveys were used to evaluate students' learning. Participants in the control group were learning in labs through the materials that were aligned with core concepts by following predetermined procedures. Students in the experimental group learned through inquiry-based lab materials that required them to work in teams by integrating core concepts together to find a solution and while following one of potentially many approaches. To maximize the online lab learning effect and to replicate the contemporary industry, commerce, and research practices, instructor-structured cooperative learning strategies were applied along with pre-lab simulations and instructional videos. This paper showcases the outcomes of our 2nd year implementation of active learning laboratory strategies on the mixed population of online and face-to-face students. We observed that students in the experimental group generally outperformed their counterparts in labs and showed significantly higher results in the assignments addressing more advanced concept understanding and applications (grand average of 88.3% vs. 66.3%). Surveys also indicated that students saw the benefits of collaboration with Open-Ended lab modules not only for learning concepts, but also for improving their communication skills. Students were able to collaborate on lab problems through various communication tools, such as course Learning Management System (LMS) and mobile apps forming online learning communities. We believe that that the implementation of open-ended collaborative laboratory strategies can assist students in cultivating a deeper comprehension, fostering self-confidence, and refining their critical thinking abilities, all while strengthening their sense of inclusion within the field of engineering.more » « less
-
Abstract Background With the increasing popularity of distance education, how to engage students in online inquiry‐based laboratories remains challenging for science teachers. Current remote labs mostly adopt a centralized model with limited flexibility left for teachers' just‐in‐time instruction based on students' real‐time science practices.
Objectives The goal of this research is to investigate the impact of a non‐centralized remote lab on students' cognitive and behavioural engagement.
Methods A mixed‐methods design was adopted. Participants were the high school students enrolled in two virtual chemistry classes. Remote labs 2.0, branded as Telelab, supports a non‐centralized model of remote inquiry that can enact more interactive hands‐on labs anywhere, anytime. Teleinquiry Instructional Model was used to guide the curriculum design. Students' clickstreams logs and instruction timestamps were analysed and visualized. Multiple regression analysis was used to determine whether engagement levels influence their conceptual learning. Behavioural engagement patterns were corroborated with survey responses.
Results and Conclusions We found approximate synchronizations between student–teacher–lab interactions in the heatmap. The guided inquiry enabled by Telelab facilitates real‐time communications between instructors and students. Students' conceptual learning is found to be impacted by varying engagement levels. Students' behavioural engagement patterns can be visualized and fed to instructors to inform learning progress and enact just‐in‐time instruction.
Implications Telelab offers a model of remote labs 2.0 that can be easily customized to live stream hands‐on teleinquiry. It enhances engagement and gives participants a sense of telepresence. Providing a customizable teleinquiry curriculum for practitioners may better prepare them to teach inquiry‐based laboratories online.
-
Abstract Simulation models are increasingly used by ecologists to study complex, ecosystem‐scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis‐driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands‐on modeling activities in the classroom affects student learning. Here, we developed short (3‐hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data‐Driven Inquiry & Exploration) program that engage students with hands‐on ecosystem modeling in the R statistical environment. We embedded the modules into in‐person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self‐reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their “ease of use” after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinking in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands‐on ecosystem modeling activities may increase students’ awareness of how individual components interact to affect system‐level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in‐person, hybrid, or virtual modes of instruction.
-
Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs.more » « less