- Award ID(s):
- 1743117
- NSF-PAR ID:
- 10484108
- Editor(s):
- Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
- Publisher / Repository:
- Institute for Scientist & Engineer Educators (ISEE)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper presents an innovative approach to improve engineering students’ problem-solving skills by implementing think-aloud exercises. Sometimes engineering students claim they do not know where to start with the problem-solving process, or they are not sure how to proceed to the next steps when they get stuck. A systematic training that focuses on the problem-solving process and the justification of each step could help. Think-aloud techniques help make the invisible mental processes visible to learners. Engineering think-aloud technique engages students and helps them make their way through a solving process step-by-step, reasoning along with them. In this study, a multiple faceted systematic approach that integrates think-aloud exercises through video assignments and oral exams were developed and implemented in two pilot engineering classes. We present our think-aloud exercises and oral exams structures in each of the courses and their impacts on students' learning outcomes, and students’ perceptions towards the pedagogical approach. Both quantitative and qualitative results show that the think-aloud exercise assignments and oral exams enhance students’ problem-solving skills and promote learning.more » « less
-
Computational thinking has widely been recognized as a crucial skill for engineers engaged in problem-solving. Multidisciplinary learning environments such as integrated STEM courses are powerful spaces where computational thinking skills can be cultivated. However, it is not clear the best ways to integrate computational thinking instruction or how students develop computational thinking in those spaces. Thus, we wonder: To what extent does engaging students in integrated engineering design and physics labs impact their development of computational thinking? We have incorporated engineering design within a traditional introductory calculus-based physics lab to promote students’ conceptual understanding of physics while fostering scientific inquiry, mathematical modeling, engineering design, and computational thinking. Using a generic qualitative research approach, we explored the development of computational thinking for six teams when completing an engineering design challenge to propose an algorithm to remotely control an autonomous guided vehicle throughout a warehouse. Across five consecutive lab sessions, teams represented their algorithms using a flowchart, completing four iterations of their initial flowchart. 24 flowcharts were open coded for evidence of four computational thinking facets: decomposition, abstraction, algorithms, and debugging. Our results suggest that students’ initial flowcharts focused on decomposing the problem and abstracting aspects that teams initially found to be more relevant. After each iteration, teams refined their flowcharts using pattern recognition, algorithm design, efficiency, and debugging. The teams would benefit from having more feedback about their understanding of the problem, the relevant physics concepts, and the logic and efficiency of the flowchartsmore » « less
-
Abstract This paper shares findings from a teacher designed physics and computing unit that engaged students in learning physics and computing concurrently thru inquiry. Using scientific inquiry skills and practices, students were tasked with assessing the validity of local rollercoaster g-force ratings as posted to the public. Students used computational electronic textile circuits (e-textiles) to engage in “myth busting” amusement park g-force ratings. In doing so, students engaged computing and computational thinking skills in service to answering their scientific inquiry. Findings from this study indicate that physics classes are ideal spaces for engaging in computing’s Big Ideas as laid out by Grover and Pea (Educational Researcher 42, 38–43, 2013) as well as the pillars of computational thinking (Wing, Communications of the ACM 49, 33–35, 2006). However, essential to this dual engagement is a need for computing content to act in service to the better acquisition of physics content within the physics classroom space. Findings indicate that the teachers’ use of e-textiles to integrate physics and computing broadened and deepened student learning by providing affordances for computational thinking within the structure of physical science inquiry.
-
Frank, Brian W. ; Jones, Dyan L. ; Ryan, Qing X. (Ed.)The ways in which physics majors make career decisions is a critical, yet understudied, aspect of the undergraduate experience. Such decisions are important to students, physics departments, and administrators. In this project, we specifically examine how students develop interests and intent to pursue specific subfields of physics by interviewing 13 physics majors from all years of study. The interviews examined factors that led students to choose their most preferred and least preferred subfields. Interviews leveraged the framework of Social Cognitive Career Theory, a model that describes how several constructs such as self-efficacy, learning experiences, and outcome expectations relate to decision-making. Findings highlight the differences in decision-making between upper-division students and beginning students. For instance, we see how popular culture and popular science provide an initial learning experience about certain subfields, such as astronomy and astrophysics, which strongly affect beginning students' perceptions of that subfield. Initial exposure to biology and chemistry in high school or early undergraduate classes often negatively affected students' interests in fields like biophysics or chemical physics. Data also suggests a splitting between students with respect to their outcome expectations of a desirable career in science. While some students prioritize using science to help people, others prioritize discovery of new knowledge though science, and some are in between. Students in both groups form perceptions about subfields that do not align with their identities and hence make decisions based on these perceptions. For instance, a student who prioritizes helping others through science may be quick to reject astrophysics as a subfield choice as they do not think that astrophysics can help people enough.more » « less
-
Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)We designed, facilitated, and re-designed an inquiry activity in an introductory undergraduate astronomy research methods course at the University of Texas at Austin over two different semesters. The teaching venue for this inquiry activity took place in the course “AST 376R: A Practical Introduction to Research Methods”, the inquiry activity was inserted into an existing course structure, taking place over multiple class periods. We discuss how we were able to leverage the Professional Development Program (PDP) inquiry themes and introduce students to specific STEM practices, using this experience as a primer or mini version of a larger research activity and research experience that they would determine and lead themselves later on in the semester. In this paper we describe the benefits for students in this course and the lessons learned by the instructors.more » « less