By virtue of their extensive potential in energy conversion and storage, catalysis, photocatalysis, adsorption, separation and life science applications, significant interest has been devoted to the design and synthesis of hierarchical porous materials. The main factors which determines the performance of hierarchical porous materials for an application include structure (pore size, porosity, tortuosity), materials (scaffold, dopants) and operating conditions. Traditionally, these hierarchical porous materials are synthesised and fabricated through a manual trial and error procedure, which is an expensive and time-consuming approach. However, there have been significant advances in mathematical, computational and engineering tools toward solving and optimising multiscale descriptions of physical phenomena. This motivates a computational-aided framework to tailor the fabrication of hierarchical porous materials to be optimised in performance for their specific application. In this work, a reactive-transport system in porous media is modelled using computational fluid dynamics. While microscale descriptions are too computationally expensive and macroscale models fail to accurately describe a physical phenomena in specific parts of computational domains, hybrid - or multiscale - algorithms, are used. Using the information provided by the numerical simulation, multiscale model-based design of experiments are developed to optimise the material’s performance on their particular usage. It is proposed that hierarchical multiscale modeling offers a systematic framework for identification of the important scales and parameters where one should focus experimental efforts on.
more »
« less
Electro-Chemo-Mechanical Modeling of Multiscale Active Materials for Next-Generation Energy Storage: Opportunities and Challenges
Although lithium-ion batteries represent the best available rechargeable battery technology, a significant energy and power density gap exists between LIBs and petrol/gasoline. The battery electrodes comprise a mixture of active materials particles, conductive carbon, and binder additives deposited onto a current collector. Although this basic design has persisted for decades, the active material particle’s desired size scale is debated. Traditionally, microparticles have been used in batteries. Advances in nanotechnology have spurred interest in deploying nanoparticles as active materials. However, despite many efforts in nano, industries still primarily use ‘old’ microparticles. Most importantly, the battery industry is unlikely to replace microstructures with nanometer-sized analogs. This poses an important question: Is there a place for nanostructure in battery design due to irreplaceable microstructure? The way forward lies in multiscale active materials, microscale structures with built-in nanoscale features, such as microparticles assembled from nanoscale building blocks or patterned with engineered or natural nanopores. Although experimental strides have been made in developing such materials, computational progress in this domain remains limited and, in some cases, negligible. However, the fields hold immense computational potential, presenting a multitude of opportunities. This perspective highlights the existing gaps in modeling multiscale active materials and delineates various open challenges in the realm of electro-chemo-mechanical modeling. By doing so, it aims to inspire computational research within this field and promote synergistic collaborative efforts between computational and experimental researchers.
more »
« less
- PAR ID:
- 10484121
- Publisher / Repository:
- JOM
- Date Published:
- Journal Name:
- JOM
- ISSN:
- 1047-4838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium-ion batteries (LIBs) are ubiquitous in everyday applications. However, Lithium (Li) is a limited resource on the planet and, therefore, not sustainable. As an alternative to lithium, earth-abundant and cheaper multivalent metals such as aluminum (Al) and calcium (Ca) have been actively researched in battery systems. However, finding suitable intercalation hosts for multivalent-ion batteries is urgently needed. Open-tunneled oxides represent a specific category of microparticles distinguished by the presence of integrated one-dimensional channels or nanopores. This work focuses on two promising open-tunnel oxides: Niobium Tungsten Oxide (NTO) and Molybdenum Vanadium Oxide (MoVO). The MoVO structure can accommodate a larger number of multivalent ions than NTO due to its larger surface area and different shapes. Specifically, the MoVO structure can adsorb Ca, Li, and Al ions with adsorption potentials ranging from around 4 to 5 eV. However, the adsorption potential for hexagonal channels of Al ion drops to 1.73 eV due to the limited channel area. The NTO structure exhibits an insertion/adsorption potential of 4.4 eV, 3.4 eV, and 0.9 eV for one Li, Ca, and Al, respectively. Generally, Ca ions are more readily adsorbed than Al ions in both MoVO and NTO structures. Bader charge analysis and charge density plots reveal the role of charge transfer and ion size in the insertion of multivalent ions such as Ca and Al into MoVO and NTO systems. Exploring open-tunnel oxide materials for battery applications is hindered by vast compositional possibilities. The execution of experimental trials and quantum-based simulations is not viable for addressing the challenge of locating a specific item within a large and complex set of possibilities. Therefore, it is imperative to conduct structural stability testing to identify viable combinations with sufficient pore topologies. Data mining and machine learning techniques are employed to discover innovative transitional metal oxide materials. This study compares two machine learning algorithms, one utilizing descriptors and the other employing graphs to predict the synthesizability of new materials inside a laboratory setting. The outcomes of this study offer valuable insights into the exploration of alternative naturally occurring multiscale particles.more » « less
-
High energy density lithium-O2 batteries have potential to increase electric vehicle driving range, but commercialization is prevented by technical challenges. Researchers have proposed electrolytes, catalysts, and binders to improve the battery capacity and reduce capacity fade. Novel battery design, however, is not always consistent with reduction in greenhouse gas (GHG) emissions. Optimizing battery design using solely electrochemical metrics ignores variations in the environmental impacts of different materials. The lack of uniform reporting practices further complicates such efforts. This paper presents commonly used lithium-O2 battery materials along with their GHG emissions. We use LCA methodology to estimate GHG emissions for five proposed lithium-O2 battery designs: (i) without catalyst, (ii) with catalyst, (iii) carbon-less and binder-less, (iv) anode protection, and (v) carbon-less, binder-less with gold catalyst. This work highlights knowledge gaps in lithium-O2 battery LCA, provides a benchmark to quantify battery composition impacts, and demonstrates the GHG emissions associated with certain materials and designs for laboratory-scale batteries. Predicted GHG emissions range from 10–70 kg of CO2 equivalent (kg CO2𝑒) kg−1 of battery, 60–1200 kg CO2𝑒 kWh−1, and 0.15–21 kg CO2𝑒 per km of vehicle travel, if battery replacement is considered.more » « less
-
Abstract Two-dimensional materials (2DM) and their heterostructures (2D + nD, where n = 0, 1, 2, 3) hold significant promise for electrochemical energy storage systems (EESS), such as batteries. 2DM can act as van der Waals (vdW) slick interfaces between conventional active materials (e.g., silicon) and current collectors, enhancing interfacial adhesion and mitigating stress-induced fractures. They can also serve as alternatives to traditional polymer binders (e.g., MXenes), highlighting the importance of interfacial mechanics between 2DM and active materials. During charge/discharge cycles, intercalation and deintercalation processes substantially affect the mechanical behavior of 2DM used as binders, collectors, or electrodes. For example, porous graphene networks have demonstrated capacities up to five times greater than traditional graphite anodes. However, modeling 2DM in EESS remains challenging due to the complex coupling between electrochemistry and mechanics. Defective graphene, for instance, promotes strong adatom adsorption (e.g., Li⁺), which can hinder desorption during discharge, thereby influencing mechanical properties. Despite the promise of 2DM, most current studies fall short in capturing these critical chemo-mechanical interactions. This perspective provides a comprehensive overview of recent advances in understanding the mechanical behavior of 2DM in EESS. It identifies key modeling challenges and outlines future research directions. Multiscale modeling approaches—including atomistic and molecular simulations, continuum mechanics, machine learning, and generative artificial intelligence—are discussed. This work aims to inspire deeper exploration of the chemo-mechanics of 2DM and offer valuable guidance for experimental design and optimization of 2DM-based EESS for practical applications.more » « less
-
Abstract Lithium‐ion batteries are indispensable power sources for a wide range of modern electronic devices. However, battery lifespan remains a critical limitation, directly affecting the sustainability and user experience. Conventional battery failure analysis in controlled lab settings may not capture the complex interactions and environmental factors encountered in real‐world, in‐device operating conditions. This study analyzes the failure of commercial wireless earbud batteries as a model system within their intended usage context. Through multiscale and multimodal characterizations, the degradations from the material level to the device level are correlated, elucidating a failure pattern that is closely tied to the specific device configuration and operating conditions. The findings indicate that the ultimate failure mode is determined by the interplay of battery materials, cell structural design, and the in‐device microenvironment, such as temperature gradients and their fluctuations. This holistic, in‐device perspective on environmental influences provides critical insights for battery integration design, enhancing the reliability of modern electronics.more » « less
An official website of the United States government

