Radium isotopes are continuously produced at ocean boundaries and are soluble in seawater. Radium therefore serves as an analogue for similarly sourced shelf-derived materials, including biologically important elements such as carbon, nutrients, and trace metals. To test the hypothesis that climate change is leading to increased delivery of terrestrially-derived solutes to the Arctic Ocean, radium levels are measured on bi-annual cruises along the Laptev and East Siberian Sea margins (to capture interannual changes) and on a first-of-its kind in situ radium isotope sampler (to capture seasonal changes). These sampling efforts are complemented by an international network of collaborators that will contribute data to create an Arctic Radium Isotope Observing Network (ARION) that spans the Arctic Ocean and will serve the greater scientific community.\n This dataset contains the (1) results of the water column measurements made on the second ARION cruise, which took place in August-October 2023 along the slopes of the East Siberian and Laptev Seas in collaboration with the Nansen and Amundsen Basin Observational Systems (NABOS) program, and (2) results from two moored radium in situ samplers (MoRIS) deployed on the Laptev and East Siberian Slopes from 2021-2023. Parameters measured include radium-228, radium-226, oxygen-18, deuterium, salinity, and barium.
more »
« less
Radium Isotopes as Tracers of Shelf‐Basin Exchange Processes in the Eastern Arctic Ocean
Radium isotopes, which are sourced from sediments, are useful tools for studying potential climate‐driven changes in the transfer of shelf‐derived elements to the open Arctic Ocean. Here we present observations of radium‐228 and radium‐226 from the Siberian Arctic, focusing on the shelf‐basin boundary north of the Laptev and East Siberian Seas. Water isotopes and nutrients are used to deconvolve the contributions from different water masses in the study region, and modeled currents and water parcel back‐trajectories provide insights on water pathways and residence times. High radium levels and fractions of meteoric water, along with modeled water parcel back‐trajectories, indicate that shelf‐ and river‐influenced water left the East Siberian Shelf around 170°E in 2021; this is likely where the Transpolar Drift was entering the central Arctic. A transect extending from the East Siberian Slope into the basin is used to estimate a radium‐228 flux of 2.67 × 107atoms m−2 d−1(possible range of 1.23 × 107–1.04 × 108atoms m−2 d−1) from slope sediments, which is comparable to slope fluxes in other regions of the world. A box model is used to determine that the flux of radium‐228 from the Laptev and East Siberian Shelves is 9.03 × 107atoms m−2 d−1(possible range of 3.87 × 107–1.56 × 108atoms m−2 d−1), similar to previously estimated fluxes from the Chukchi Shelf. These three shelves contribute a disproportionately high amount of radium to the Arctic, highlighting their importance in regulating the chemistry of Arctic surface waters.
more »
« less
- PAR ID:
- 10484141
- Publisher / Repository:
- AGU/Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 128
- Issue:
- 12
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Radium isotopes (radium-228 and radium-226), water isotopes (oxygen-18 and deuterium), and salinity were measured on the slope of the East Siberian Sea in coordination with the 2018 Nansen and Amundsen Basins Observational System (NABOS) expedition. Radium is continuously produced at ocean boundaries and is soluble in seawater, thus it serves as an analogue for similarly sourced sediment-derived materials. Because the Eastern Arctic shelves are the origin of the Transpolar Drift, monitoring the radium levels in this region improves our understanding of potential climate-driven changes on the transport of shelf-derived materials offshore.more » « less
-
Radium isotopes are continuously produced at ocean boundaries and are soluble in seawater. Radium therefore serves as an analogue for similarly sourced shelf-derived materials, including biologically important elements such as carbon, nutrients, and trace metals. To test the hypothesis that climate change is leading to increased delivery of terrestrially-derived solutes to the Arctic Ocean, radium levels will be measured on bi-annual cruises along the Laptev and East Siberian Sea margins (to capture interannual changes) and on a first-of-its kind in situ radium isotope sampler (to capture seasonal changes). These sampling efforts will be complemented by an international network of collaborators that will contribute data to create an Arctic Radium Isotope Observing Network (ARION) that spans the Arctic Ocean and will serve the greater scientific community. This dataset contains the results of the water column measurements made on the first ARION cruise, which took place in Sept-Oct 2021 along the slopes of the East Siberian and Laptev Seas in collaboration with the Nansen and Amundsen Basin Observational Systems (NABOS) program. Parameters measured include radium-228, radium-226, oxygen-18, deuterium, and salinity.more » « less
-
Radium is a useful tracer of sediment‐derived materials, improving our understanding of the geochemical cycling of elements at ocean boundaries. We have developed an autonomous in situ sampler to collect time series samples of radium isotopes on mooring deployments. Samplers were deployed for 2 yr in the Arctic Ocean, a region particularly hard to access outside of the summer season, and collected monthly samples to create the first annual time series of radium‐228 and radium‐226 in the Arctic. Results from the Laptev Slope show increased radium‐228 and radium‐228/radium‐226 ratios in spring/summer, concomitant with increased meteoric water and brine influence. Together, these tracers indicate seasonal periods of increased influence of shelf‐ and river‐derived materials, findings which would not be possible to discern from summertime shipboard surveys alone. The development of this in situ sampler has therefore expanded our capability to use radium as a tracer to discern temporal changes in the geochemistry of remote areas of the ocean.more » « less
-
Abstract Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.more » « less
An official website of the United States government

