skip to main content


This content will become publicly available on December 1, 2024

Title: Perspectives for Using CO2 as a Feedstock for Biomanufacturing of Fuels and Chemicals

Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions—a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.

 
more » « less
Award ID(s):
2133660
NSF-PAR ID:
10484174
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Bioengineering
Volume:
10
Issue:
12
ISSN:
2306-5354
Page Range / eLocation ID:
1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Development of the bioeconomy is driven by our ability to access the energy‐rich carbon trapped in recalcitrant plant materials. Current strategies to release this carbon rely on expensive enzyme cocktails and physicochemical pretreatment, producing inhibitory compounds that hinder subsequent microbial bioproduction. Anaerobic fungi are an appealing solution as they hydrolyze crude, untreated biomass at ambient conditions into sugars that can be converted into value‐added products by partner organisms. However, some carbon is lost to anaerobic fungal fermentation products. To improve efficiency and recapture this lost carbon, we built a two‐stage bioprocessing system pairing the anaerobic fungusPiromyces indianaewith the yeastKluyveromyces marxianus, which grows on a wide range of sugars and fermentation products. In doing so we produce fine and commodity chemicals directly from untreated lignocellulose.P.indianaeefficiently hydrolyzed substrates such as corn stover and poplar to generate sugars, fermentation acids, and ethanol, whichK.marxianusconsumed while producing 2.4 g/L ethyl acetate. An engineered strain ofK.marxianuswas also able to produce 550 mg/L 2‐phenylethanol and 150 mg/L isoamyl alcohol fromP.indianaehydrolyzed lignocellulosic biomass. Despite the use of crude untreated plant material, production yields were comparable to optimized rich yeast media due to the use of all available carbon including organic acids, which formed up to 97% of free carbon in the fungal hydrolysate. This work demonstrates that anaerobic fungal pretreatment of lignocellulose can sustain the production of fine chemicals at high efficiency by partnering organisms with broad substrate versatility.

     
    more » « less
  2. Strik, David (Ed.)

    The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.

     
    more » « less
  3. Abstract Microbial production of fuels, chemicals, and materials has the potential to reduce greenhouse gas emissions and contribute to a sustainable bioeconomy. While synthetic biology allows readjusting of native metabolic pathways for the synthesis of desired products, often these native pathways do not support maximum efficiency and are affected by complex regulatory mechanisms. A synthetic or engineered pathway that allows modular synthesis of versatile bioproducts with minimal enzyme requirement and regulation while achieving high carbon and energy efficiency could be an alternative solution to address these issues. The reverse β-oxidation (rBOX) pathways enable iterative non-decarboxylative elongation of carbon molecules of varying chain lengths and functional groups with only four core enzymes and no ATP requirement. Here, we describe recent developments in rBOX pathway engineering to produce alcohols and carboxylic acids with diverse functional groups, along with other commercially important molecules such as polyketides. We discuss the application of rBOX beyond the pathway itself by its interfacing with various carbon-utilization pathways and deployment in different organisms, which allows feedstock diversification from sugars to glycerol, carbon dioxide, methane, and other substrates. 
    more » « less
  4. Abstract  
    more » « less
  5. Abstract

    Microbial production of fuels and chemicals from lignocellulosic biomass provides a promising alternative to conventional petroleum‐derived routes. However, the heterogeneous sugar composition of lignocellulose prevents efficient microbial sugar co‐fermentation due to carbon catabolite repression, which negatively affects production metrics. We previously discovered that a mutant copy of the transcriptional regulator XylR (P363S and R121C; denoted as XylR*) inEscherichia colihas a higher DNA‐binding affinity than wild‐type XylR, leading to a stronger activation of thed‐xylose catabolic genes and a release from glucose‐induced repression on xylose fermentation. Here, we showed that XylR* also releasesl‐arabinose‐induced repression on xylose fermentation through altered transcriptional control, enhancing co‐fermentation of arabinose–xylose sugar mixtures in wild‐typeE. coli. IntegratingxylR*into an ethanologenicE. coliresulted in the coutilization of 96% of the provided glucose–xylose–arabinose mixtures (120 g/L total sugars supplied) with an ethanol yield higher than 90% of the theoretical maximum by simple batch fermentations.

     
    more » « less