skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancements in xASP, an XAI System for Answer Set Programming
Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets, explanation sequences, and explanation DAGs.  more » « less
Award ID(s):
1812628
PAR ID:
10484184
Author(s) / Creator(s):
Editor(s):
Agostino Dovier, Andrea Formisano
Publisher / Repository:
CEUR-WS.org
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets, explanation sequences, and explanation DAGs. DAGs are shown to the user in an interactive form via the xASP navigator application, also introduced in this work. 
    more » « less
  2. null (Ed.)
    Abstract The paper describes an ongoing effort in developing a declarative system for supporting operators in the Nuclear Power Plant (NPP) control room. The focus is on two modules: diagnosis and explanation of events that happened in NPPs. We describe an Answer Set Programming (ASP) representation of an NPP, which consists of declarations of state variables, components, their connections, and rules encoding the plant behavior. We then show how the ASP program can be used to explain the series of events that occurred in the Three Mile Island, Unit 2 (TMI-2) NPP accident, the most severe accident in the USA nuclear power plant operating history. We also describe an explanation module aimed at addressing answers to questions such as “why an event occurs?” or “what should be done?” given the collected data. 
    more » « less
  3. Abstract Neural network architectures are achieving superhuman performance on an expanding range of tasks. To effectively and safely deploy these systems, their decision‐making must be understandable to a wide range of stakeholders. Methods to explain artificial intelligence (AI) have been proposed to answer this challenge, but a lack of theory impedes the development of systematic abstractions, which are necessary for cumulative knowledge gains. We propose Bayesian Teaching as a framework for unifying explainable AI (XAI) by integrating machine learning and human learning. Bayesian Teaching formalizes explanation as a communication act of an explainer to shift the beliefs of an explainee. This formalization decomposes a wide range of XAI methods into four components: (a) the target inference, (b) the explanation, (c) the explainee model, and (d) the explainer model. The abstraction afforded by Bayesian Teaching to decompose XAI methods elucidates the invariances among them. The decomposition of XAI systems enables modular validation, as each of the first three components listed can be tested semi‐independently. This decomposition also promotes generalization through recombination of components from different XAI systems, which facilitates the generation of novel variants. These new variants need not be evaluated one by one provided that each component has been validated, leading to an exponential decrease in development time. Finally, by making the goal of explanation explicit, Bayesian Teaching helps developers to assess how suitable an XAI system is for its intended real‐world use case. Thus, Bayesian Teaching provides a theoretical framework that encourages systematic, scientific investigation of XAI. 
    more » « less
  4. Abstract Logic Programs with Ordered Disjunction (LPOD) is an extension of standard answer set programs to handle preference using the construct of ordered disjunction, and CR-Prolog 2 is an extension of standard answer set programs with consistency restoring rules and LPOD-like ordered disjunction. We present reductions of each of these languages into the standard ASP language, which gives us an alternative way to understand the extensions in terms of the standard ASP language. 
    more » « less
  5. Abstract Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans , that is, solutions to planning problems, that transform a given state of the world to another state. The development of efficient and scalable answer set solvers has provided a significant boost to the development of ASP-based planning systems. This paper surveys the progress made during the last two and a half decades in the area of answer set planning, from its foundations to its use in challenging planning domains. The survey explores the advantages and disadvantages of answer set planning. It also discusses typical applications of answer set planning and presents a set of challenges for future research. 
    more » « less