Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents from their start locations to their goal locations without collisions. We study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of agents only within a finite time horizon and ignores collisions beyond it. Our framework is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We evaluate our framework with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents, significantly outperforming existing methods.
more »
« less
Load Balancing in Distributed Multi-Agent Path Finder (DMAPF)
The Multi-Agent Path Finding (MAPF) is a problem of finding a plan for agents to reach their desired locations without colliding. Distributed Multi-Agent Path Finder (DMAPF) solves the MAPF problem by decomposing a given MAPF problem instance into smaller subproblems and solve them in parallel. DMAPF works in rounds. Between two consecutive rounds, agents may migrate between two adjacent subproblems following their abstract plans, which are pre-computed, until all of them reach the areas that contain their desired locations. Previous works on DMAPF compute an abstract plan for each agent without the knowledge of other agents’ abstract plans, resulting in high congestion in some areas, especially those that act as corridors. The congestion negatively impacts the runtime of DMAPF and prevents it from being able to solve dense MAPF problems.
In this paper, we (i) investigate the use of Uniform-Cost Search to mitigate the congestion. Additionally, we explore the use of several other techniques including (ii) using timeout estimation to preemptively stop solving and relax a subproblem when it is likely to get stuck; (iii) allowing a solving process to manage multiple subproblems – aimed to increase concurrency; and (iv) integrating with MAPF solvers from the Conflict-Based Search family. Experimental results show that our new system is several times faster than the previous ones; can solve larger and denser problems that were unsolvable before; and has better runtime than PBS and EECBS, which are state-of-the-art centralized suboptimal MAPF solvers, in problems with a large number of agents.
more »
« less
- Award ID(s):
- 1812628
- NSF-PAR ID:
- 10484187
- Editor(s):
- Andrei Ciortea; Mehdi Dastani; Jieting Luo
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Engineering Multi-Agent Systems - 11th International EMAS Workshop - Revised Selected Papers
- Volume:
- 14378
- Page Range / eLocation ID:
- 130-147
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collisionfree paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework.more » « less
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executablemore » « less
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable.more » « less
-
Multi-Agent Path Finding (MAPF) problems are traditionally solved in a centralized manner. There are works focusing on completeness, optimality, performance, or a tradeoff between them. However, there are only a few works based on spatial distribution. In this paper, we introduce ros-dmapf, a distributed MAPF solver. It consists of multiple MAPF sub-solvers, which---besides solving their assigned sub-problems---interact with each other to solve a given MAPF problem. In the current implementation, the sub-solvers are answer set planning systems for multiple agents, and are created based on spatial distribution of the problem. Interactions between components of ros-dmapf are facilitated by the Robot Operating System (ROS). The highlights of ros-dmapf are its scalability and a high degree of parallelism. We empirically evaluate ros-dmapf using the move-only domain of the asprilo system and results suggest that ros-dmapf scales up well. For instance, ros-dmapf gives a solution of length around 600 for a MAPF problem with 2000 robots in randomly generated 100×100 obstacle-free maps---a problem beyond the capability of a single sub-solver---within 7 minutes on a consumer laptop. We also evaluate ros-dmapf against some other MAPF solvers and results show that the system performs well. We also discuss possible improvements for future work.more » « less