skip to main content


Title: Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents from their start locations to their goal locations without collisions. We study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of agents only within a finite time horizon and ignores collisions beyond it. Our framework is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We evaluate our framework with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents, significantly outperforming existing methods.  more » « less
Award ID(s):
1724392
NSF-PAR ID:
10179952
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collisionfree paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework. 
    more » « less
  2. The 2D Multi-Agent Path Finding (MAPF) problem aims at finding collision-free paths for a number of agents, from a set of start locations to a set of goal locations in a known 2D environment. MAPF has been studied in theoretical computer science, robotics, and artificial intelligence over several decades, due to its importance for robot navigation. It is currently experiencing significant scientific progress due to its relevance for automated warehouses (such as those operated by Amazon) and other important application areas. In this paper, we demonstrate that some recently developed MAPF algorithms apply more broadly than currently believed in the MAPF research community. In particular, we describe the 3D Pipe Routing (PR) problem, which aims at placing collision-free pipes from given start locations to given goal locations in a known 3D environment. The MAPF and PR problems are similar: a solution to a MAPF instance is a set of blocked cells in x-y-t space, while a solution to the corresponding PR instance is a set of blocked cells in x-y-z space. We show how to use this similarity to apply several recently developed MAPF algorithms to the PR problem, and discuss their performance on real-world PR instances. This opens up a new direction of industrial relevance for the MAPF research community. 
    more » « less
  3. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  4. Multi-Agent Path Finding (MAPF) is the problem of moving multiple agents from starts to goals without collisions. Lifelong MAPF (LMAPF) extends MAPF by continuously assigning new goals to agents. We present our winning approach to the 2023 League of Robot Runners LMAPF competition, which leads us to several interesting research challenges and future directions. In this paper, we outline three main research challenges. The first challenge is to search for high-quality LMAPF solutions within a limited planning time (e.g., 1s per step) for a large number of agents (e.g., 10,000) or extremely high agent density (e.g., 97.7%). We present future directions such as developing more competitive rule-based and anytime MAPF algorithms and parallelizing state-of-the-art MAPF algorithms. The second challenge is to alleviate congestion and the effect of myopic behaviors in LMAPF algorithms. We present future directions, such as developing moving guidance and traffic rules to reduce congestion, incorporating future prediction and real-time search, and determining the optimal agent number. The third challenge is to bridge the gaps between the LMAPF models used in the literature and real-world applications. We present future directions, such as dealing with more realistic kinodynamic models, execution uncertainty, and evolving systems.

     
    more » « less
  5. Andrei Ciortea ; Mehdi Dastani ; Jieting Luo (Ed.)
    The Multi-Agent Path Finding (MAPF) is a problem of finding a plan for agents to reach their desired locations without colliding. Distributed Multi-Agent Path Finder (DMAPF) solves the MAPF problem by decomposing a given MAPF problem instance into smaller subproblems and solve them in parallel. DMAPF works in rounds. Between two consecutive rounds, agents may migrate between two adjacent subproblems following their abstract plans, which are pre-computed, until all of them reach the areas that contain their desired locations. Previous works on DMAPF compute an abstract plan for each agent without the knowledge of other agents’ abstract plans, resulting in high congestion in some areas, especially those that act as corridors. The congestion negatively impacts the runtime of DMAPF and prevents it from being able to solve dense MAPF problems. In this paper, we (i) investigate the use of Uniform-Cost Search to mitigate the congestion. Additionally, we explore the use of several other techniques including (ii) using timeout estimation to preemptively stop solving and relax a subproblem when it is likely to get stuck; (iii) allowing a solving process to manage multiple subproblems – aimed to increase concurrency; and (iv) integrating with MAPF solvers from the Conflict-Based Search family. Experimental results show that our new system is several times faster than the previous ones; can solve larger and denser problems that were unsolvable before; and has better runtime than PBS and EECBS, which are state-of-the-art centralized suboptimal MAPF solvers, in problems with a large number of agents. 
    more » « less