skip to main content


This content will become publicly available on December 15, 2024

Title: Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3is generally low, and H2SO4is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4and HIOxduring atmospheric particle nucleation. We found that HIOxgreatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3strongly binds with H2SO4in charged clusters so they drive particle nucleation synergistically. Second, HIO2substitutes for NH3, forming strongly bound H2SO4-HIO2acid-base pairs in molecular clusters. Global observations imply that HIOxis enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.

 
more » « less
Award ID(s):
2132089
NSF-PAR ID:
10484234
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
382
Issue:
6676
ISSN:
0036-8075
Page Range / eLocation ID:
1308 to 1314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Iodic acid (HIO 3 ) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO 3 particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO 3 − and the sequential addition of HIO 3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO 2 ) followed by HIO 3 , showing that HIO 2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO 3 , which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere. 
    more » « less
  2. The model reactions CH3X + (NH—CH=O)M ➔ CH3—NH—NH═O or NH═CH—O—CH3 + MX (M = none, Li, Na, K, Ag, Cu; X = F, Cl, Br) are investigated to demonstrate the feasibility of Marcus theory and the hard and soft acids and bases (HSAB) principle in predicting the reactivity of ambident nucleophiles. The delocalization indices (DI) are defined in the framework of the quantum theory of atoms in molecules (QT‐AIM), and are used as the scale of softness in the HSAB principle. To react with the ambident nucleophile NH═CH—O, the carbocation H3C+from CH3X (F, Cl, Br) is actually a borderline acid according to the DI values of the forming C…N and C…O bonds in the transition states (between 0.25 and 0.49), while the counter ions are divided into three groups according to the DI values of weak interactions involving M (M…X, M…N, and M…O): group I (M = none, and Me4N) basically show zero DI values; group II species (M = Li, Na, and K) have noticeable DI values but the magnitudes are usually less than 0.15; and group III species (M = Ag and Cu(I)) have significant DI values (0.30–0.61). On a relative basis, H3C+is a soft acid with respect to group I and group II counter ions, and a hard acid with respect to group III counter ions. Therefore, N‐regioselectivity is found in the presence of group I and group II counter ions (M = Me4N, Li, Na, K), while O‐regioselectivity is observed in the presence of the group III counter ions (M = Ag, and Cu(I)). The hardness of atoms, groups, and molecules is also calculated with new functions that depend on ionization potential (I) and electron affinity (A) and use the atomic charges obtained from localization indices (LI), so that the regioselectivity is explained by the atomic hardness of reactive nitrogen atoms in the transition states according to the maximum hardness principle (MHP). The exact Marcus equation is derived from the simple harmonic potential energy parabola, so that the concepts of activation free energy, intrinsic activation barrier, and reaction energy are completely connected. The required intrinsic activation barriers can be either estimated fromab initiocalculations on reactant, transition state, and product of the model reactions, or calculated from identity reactions. The counter ions stabilize the reactant through bridging N‐ and O‐site of reactant of identity reactions, so that the intrinsic barriers for the salts are higher than those for free ambident anions, which is explained by the increased reorganization parameter Δr. The proper application of Marcus theory should quantitatively consider all three terms of Marcus equation, and reliably represent the results with potential energy parabolas for reactants and all products. For the model reactions, both Marcus theory and HSAB principle/MHP principle predict the N‐regioselectivity when M = none, Me4N, Li, Na, K, and the O‐regioselectivity when M = Ag and Cu(I). © 2019 Wiley Periodicals, Inc.

     
    more » « less
  3. Abstract

    New particle formation (NPF) represents the first step in the complex processes leading to formation of cloud condensation nuclei. Newly formed nanoparticles affect human health, air quality, weather, and climate. This review provides a brief history, synthesizes recent significant progresses, and outlines the challenges and future directions for research relevant to NPF. New developments include the emergence of state‐of‐the‐art instruments that measure prenucleation clusters and newly nucleated nanoparticles down to about 1 nm; systematic laboratory studies of multicomponent nucleation systems, including collaborative experiments conducted in the Cosmics Leaving Outdoor Droplets chamber at CERN; observations of NPF in different types of forests, extremely polluted urban locations, coastal sites, polar regions, and high‐elevation sites; and improved nucleation theories and parameterizations to account for NPF in atmospheric models. The challenges include the lack of understanding of the fundamental chemical mechanisms responsible for aerosol nucleation and growth under diverse environments, the effects of SO2and NOxon NPF, and the contribution of anthropogenic organic compounds to NPF. It is also critical to develop instruments that can detect chemical composition of particles from 3 to 20 nm and improve parameterizations to represent NPF over a wide range of atmospheric conditions of chemical precursor, temperature, and humidity.

     
    more » « less
  4. Abstract

    The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1‐BR2‐2‐[(Me2N)2C=N]‐C6H4(36) [BR2=BMes2(3), BC12H8, (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X‐ray analysis. These novel types of pre‐organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via anortho‐phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds.4and5deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1‐(RC≡C‐BR2)‐2‐[(Me2N)2C=NH]‐C6H4(R=Ph, H) and reacted with ammonia, BnNH2and pyrrolidine, to generate the FLP adducts 1‐(R2HN→BR2)‐2‐[(Me2N)2C=NH]‐C6H4, where the N‐H functionality is activated by intramolecular H‐bond interactions. In addition,5was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise,5is capable of cleaving H2, HBPin and PhSiH3to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.

     
    more » « less
  5. Abstract

    We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.

     
    more » « less