We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
We prove that
- NSF-PAR ID:
- 10411433
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 401
- Issue:
- 2
- ISSN:
- 0010-3616
- Page Range / eLocation ID:
- p. 1531-1626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ W/$$11\times 10^3$$ at$$\hbox {m}^2$$ K for a bias voltage of$$T=2000$$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$V=23$$ m and 150$$\upmu$$ m, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$\upmu$$ and$$12^\circ$$ by tuning the Fermi energy between$$80^\circ$$ eV and$$E_F=1.0$$ eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.$$E_F=0.25$$ -
Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ of dimension$$\Gamma $$ , the now usual distance to the boundary$$d < n-1$$ given by$$D = D_\beta $$ for$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$ , where$$X \in \Omega $$ and$$\beta >0$$ . In this paper we show that the Green function$$\gamma \in (-1,1)$$ G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ , in the sense that the function$$D^{1-\gamma }$$ satisfies a Carleson measure estimate on$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$ . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).$$\Omega $$ -
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ Counting the number of
k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .Computing the All-Pairs Shortest Distances matrix for an
n -node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ Certifying that an
n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
Abstract The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for
N molecular orbitals, the gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with$${\mathcal{O}}({N}^{4})$$ gate complexity in small simulations, which reduces to$${\mathcal{O}}({N}^{3})$$ gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with$${\mathcal{O}}({N}^{2})$$ gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have$${\mathcal{O}}({N}^{3})$$ depth on a linearly connected array, an improvement over the$${\mathcal{O}}({N}^{2})$$ scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.$${\mathcal{O}}({N}^{3})$$ -
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ , by showing that$\mathcal { C}$ admits non-trivial satisfiability and/or$\mathcal { C}$ # SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial# SAT algorithm for a circuit class . Say that a symmetric Boolean function${\mathcal C}$ f (x 1,…,x n ) issparse if it outputs 1 onO (1) values of . We show that for every sparse${\sum }_{i} x_{i}$ f , and for all “typical” , faster$\mathcal { C}$ # SAT algorithms for circuits imply lower bounds against the circuit class$\mathcal { C}$ , which may be$f \circ \mathcal { C}$ stronger than itself. In particular:$\mathcal { C}$ # SAT algorithms forn k -size -circuits running in 2$\mathcal { C}$ n /n k time (for allk ) implyN E X P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ # SAT algorithms for -size$2^{n^{{\varepsilon }}}$ -circuits running in$\mathcal { C}$ time (for some$2^{n-n^{{\varepsilon }}}$ ε > 0) implyQ u a s i -N P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ Applying
# SAT algorithms from the literature, one immediate corollary of our results is thatQ u a s i -N P does not haveE M A J ∘A C C 0∘T H R circuits of polynomial size, whereE M A J is the “exact majority” function, improving previous lower bounds againstA C C 0[Williams JACM’14] andA C C 0∘T H R [Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.