- Award ID(s):
- 1917851
- PAR ID:
- 10484387
- Publisher / Repository:
- Springer Atmospheric Sciences
- Date Published:
- Journal Name:
- Proceedings of the 30th International Laser Radar Conference
- ISSN:
- 2194-5217
- ISBN:
- 978-3-031-37817-1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The planetary boundary layer height (PBLH) is an essential parameter for weather forecasting and climate modeling. The primary methods for obtaining the PBLH include radiosonde measurements of atmospheric parameters and lidar measurements, which track aerosol layers in the lower atmosphere. Radiosondes provide the parameters to determine the PBLH but cannot monitor changes over a diurnal cycle. Lidar instruments can track the temporal variability of the PBLH and account for spatial variability when operated in a network configuration. The networkable micropulse DIAL (MPD) instruments for thermodynamic profiling are based on diode-laser technology that is eye-safe and cost-effective and has demonstrated long-term autonomous operation. We present a retrieval algorithm for determining the PBLH from the quantitative aerosol profiling capability of the high spectral resolution channel of the MPD. The PBLH is determined using a Haar wavelet transform (HWT) method that tracks aerosol layers in the lower atmosphere. The PBLH from the lidar is compared with the PBLH determined from potential temperature profiles from radiosondes. In many cases, good agreement among the PBLH retrievals was seen. However, the radiosonde retrieval often missed the lowest inversion layer when several layers were present, while the HWT could track the lowest layer.more » « less
-
A collaborative research effort by Montana State University and the National Center for Atmospheric Research has led to the development of a MicroPulse DIAL (MPD) instruments for water vapor profiling, aerosol profiling, boundary layer structure, and temperature profiling of the lower troposphere. The MPD instruments utilize a diode-laser-based instrument architecture, have demonstrated long-term autonomous network operation, and have the potential to address the needs of the science community for networkable ground-based thermodynamic profilers that can provide data in near real time. In this chapter, the recent improvements to the temperature retrieval using the MPD instruments are discussed and initial results from the improved temperature retrieval algorithm are presented.more » « less
-
Abstract. The micropulse differential absorption lidar (MPD) was developed at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) to perform range-resolved water vapor (WV) measurements using low-power lasers and photon-counting detectors. The MPD has proven to produce accurate WV measurements up to 6 km altitude. However, the MPD's ability to produce accurate higher-altitude WV measurements is impeded by the current standard differential absorption lidar (DIAL) retrieval methods. These methods are built upon a fundamental methodology that algebraically solves for the WV using the MPD forward models and noisy observations, which exacerbates any random noise in the lidar observations. The work in this paper introduces the adapted Poisson total variation (PTV) specifically for the MPD instrument. PTV was originally developed for a ground-based high spectral resolution lidar, and this paper reports on the adaptations that were required in order to apply PTV on MPD WV observations. The adapted PTV method, coined PTV-MPD, extends the maximum altitude of the MPD from 6 to 8 km and substantially increases the accuracy of the WV retrievals starting above 2 km. PTV-MPD achieves the improvement by simultaneously denoising the MPD noisy observations and inferring the WV by separating the random noise from the non-random WV. An analysis with 130 radiosonde (RS) comparisons shows that the relative root-mean-square difference (RRMSE) of WV measurements between RS and PTV-MPD exceeds 100 % between 6 and 8 km, whereas the RRMSE between RS and the standard method exceeds 100 % near 3 km. In addition, we show that by employing PTV-MPD, the MPD is able to extend its useful range of WV estimates beyond that of the ARM Southern Great Plains Raman lidar (RRMSE exceeding 100 % between 3 and 4 km); the Raman lidar has a power-aperture product 500 times greater than that of the MPD.more » « less
-
Abstract Micropulse differential absorption lidar (MPD) for water vapor, temperature, and aerosol profiling have been developed, demonstrated, and are addressing the needs of the atmospheric science community for low-cost ground-based networkable instruments capable of long-term monitoring of the lower troposphere. The MPD instruments use a diode-laser-based (DLB) architecture that can easily be adapted for a wide range of applications. In this study, a DLB direct detection Doppler lidar based on the current MPD architecture is modeled to better understand the efficacy of the instrument for vertical wind velocity measurements with the long-term goal of incorporating these measurements into the current network of MPD instruments. The direct detection Doppler lidar is based on a double-edge receiver that utilizes two Fabry-Perot interferometers and a vertical velocity retrieval that requires the ancillary measurement of the backscatter ratio, which is the ratio of the total backscatter coefficient to the molecular backscatter coefficient. The modeling in this paper accounts for the major sources of error. It indicates that the vertical velocity can be retrieved with an error of less than 0.56 m s −1 below 4 km with a 150-m range resolution and an averaging time of five minutes.more » « less
-
We demonstrate thermodynamic profile estimation with data obtained using the MicroPulse DIAL such that the retrieval is entirely self contained. The only external input is surface meteorological variables obtained from a weather station installed on the instrument. The estimator provides products of temperature, absolute humidity and backscatter ratio such that cross dependencies between the lidar data products and raw observations are accounted for and the final products are self consistent. The method described here is applied to a combined oxygen DIAL, potassium HSRL, water vapor DIAL system operating at two pairs of wavelengths (nominally centered at 770 and 828 nm). We perform regularized maximum likelihood estimation through the Poisson Total Variation technique to suppress noise and improve the range of the observations. A comparison to 119 radiosondes indicates that this new processing method produces improved temperature retrievals, reducing total errors to less than 2 K below 3 km altitude and extending the maximum altitude of temperature retrievals to 5 km with less than 3 K error. The results of this work definitively demonstrates the potential for measuring temperature through the oxygen DIAL technique and furthermore that this can be accomplished with low-power semiconductor-based lidar sensors.