This paper presents a nonlinear finite-time stable attitude estimation scheme for a rigid body with unknown dynamics. Attitude is estimated from a minimum of two linearly independent known vectors measured in the body-fixed frame, and the angular velocity vector is assumed to have a constant bias in addition to measurement errors. Estimated attitude evolves directly on the special Euclidean group SO(3), avoiding any ambiguities. The constant bias in angular velocity measurements is also estimated. The estimation scheme is proven to be almost globally finite time stable in the absence of measurement errors using a Lyapunov analysis. For digital implementation, the estimation scheme is discretized as a geometric integrator. Numerical simulations demonstrate the robustness and convergence capabilities of the estimation scheme.
more »
« less
Asymptotically stable optimal multi-rate rigid body attitude estimation based on lagrange-d'alembert principle
The rigid body attitude estimation problem is treated using the discrete-time Lagrange-d'Alembert principle. Three different possibilities are considered for the multi-rate relation between angular velocity measurements and direction vector measurements for attitude: 1) integer relation between sampling rates, 2) time-varying sampling rates, 3) non-integer relation between sampling rates. In all cases, it is assumed that angular velocity measurements are sampled at a higher rate compared to the inertial vectors. The attitude determination problem from two or more vector measurements in the body-fixed frame is formulated as Wahba's problem. At instants when direction vector measurements are absent, a discrete-time model for attitude kinematics is used to propagate past measurements. A discrete-time Lagrangian is constructed as the difference between a kinetic energy-like term that is quadratic in the angular velocity estimation error and an artificial potential energy-like term obtained from Wahba's cost function. An additional dissipation term is introduced and the discrete-time Lagrange-d'Alembert principle is applied to the Lagrangian with this dissipation to obtain an optimal filtering scheme. A discrete-time Lyapunov analysis is carried out to show that the optimal filtering scheme is asymptotically stable in the absence of measurement noise and the domain of convergence is almost global. For a realistic evaluation of the scheme, numerical experiments are conducted with inputs corrupted by bounded measurement noise. These numerical simulations exhibit convergence of the estimated states to a bounded neighborhood of the actual states.
more »
« less
- Award ID(s):
- 2132799
- PAR ID:
- 10484399
- Publisher / Repository:
- https://www.aimspress.com/article/id/6364f4acba35de77c348c4f9
- Date Published:
- Journal Name:
- Journal of Geometric Mechanics
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1941-4889
- Page Range / eLocation ID:
- 73 to 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a finite-time stable (FTS) attitude tracking control scheme in discrete time for an unmanned vehicle. The attitude tracking control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of attitude tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous time tracking control system is addressed in this paper through a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model.more » « less
-
We examine how Eulerian statistics of wave breaking and associated turbulence dissipation rates in a field of intermittent events compare with those obtained from sparse Lagrangian sampling by surface following drifters. We use a polydisperse two-fluid model with large-eddy simulation (LES) resolution and volume-of-fluid surface reconstruction (VOF) to simulate the generation and evolution of turbulence and bubbles beneath short-crested wave breaking events in deep water. Bubble contributions to dissipation and momentum transfer between the water and air phases are considered. Eulerian statistics are obtained from the numerical results, which are available on a fixed grid. Next, we sample the LES/VOF model results with a large number of virtual surface-following drifters that are initially distributed in the numerical domain, regularly or irregularly, before each breaking event. Time-averaged Lagrangian statistics are obtained using the time series sampled by the virtual drifters. We show that convergence of statistics occurs for signals that have minimum length of approximately 1000–3000 wave periods with randomly spaced observations in time and space relative to three-dimensional breaking events. We further show important effects of (i) extent of measurements over depth and (ii) obscuration of velocity measurements due to entrained bubbles, which are the two typical challenges in most of the available in situ observations of upper ocean wave breaking turbulence. An empirical correction factor is developed and applied to the previous observations of Thomson et al. Applying the new correction factor to the observations noticeably improves the inferred energy balance of wind input rates and turbulence dissipation rates. Finally, both our simulation results and the corrected observations suggested that the total wave breaking dissipation rates have a nearly linear relation with active whitecap coverage.more » « less
-
This paper addresses the problem of generating a position trajectory with pointing direction constraints at given waypoints for underactuated unmanned vehicles. The problem is initially posed on the configuration space ℝ 3 × ℝ 2 and thereafter, upon suitable modifications, is re-posed as a problem on the Lie group SE(3). This is done by determining a vector orthogonal to the pointing direction and using it as the vehicle's thrust direction. This translates to converting reduced attitude constraints to full attitude constraints at the waypoints. For the position trajectory, in addition to position constraints, this modification adds acceleration constraints at the waypoints. For real-time implementation with low computational expenses, a linear-quadratic regulator (LQR) approach is adopted to determine the position trajectory with smoothness upto the fourth time derivative of position (snap). For the attitude trajectory, the thrust direction extracted from the position trajectory is used to first propagate the attitude to the subsequent waypoint and then correct it over time to achieve the desired attitude at this waypoint. Finally, numerical simulation results are presented to validate the trajectory generation scheme.more » « less
-
This article addresses the problem of dynamic online estimation and compensation of hard-iron and soft-iron biases of three-axis magnetometers under dynamic motion in field robotics, utilizing only biased measurements from a three-axis magnetometer and a three-axis angular rate sensor. The proposed magnetometer and angular velocity bias estimator (MAVBE) utilizes a 15-state process model encoding the nonlinear process dynamics for the magnetometer signal subject to angular velocity excursions, while simultaneously estimating nine magnetometer bias parameters and three angular rate sensor bias parameters, within an extended Kalman filter framework. Bias parameter local observability is numerically evaluated. The bias-compensated signals, together with three-axis accelerometer signals, are utilized to estimate bias-compensated magnetic geodetic heading. Performance of the proposed MAVBE method is evaluated in comparison to the widely cited magnetometer-only TWOSTEP method in numerical simulations, laboratory experiments, and full-scale field trials of an instrumented autonomous underwater vehicle in the Chesapeake Bay, Maryland, USA. For the proposed MAVBE, (i) instrument attitude is not required to estimate biases, and the results show that (ii) the biases are locally observable, (iii) the bias estimates converge rapidly to true bias parameters, (iv) only modest instrument excitation is required for bias estimate convergence, and (v) compensation for magnetometer hard-iron and soft-iron biases dramatically improves dynamic heading estimation accuracy.more » « less
An official website of the United States government

