skip to main content


Title: Online Three-Axis Magnetometer Hard-Iron and Soft-Iron Bias and Angular Velocity Sensor Bias Estimation Using Angular Velocity Sensors for Improved Dynamic Heading Accuracy
This article addresses the problem of dynamic online estimation and compensation of hard-iron and soft-iron biases of three-axis magnetometers under dynamic motion in field robotics, utilizing only biased measurements from a three-axis magnetometer and a three-axis angular rate sensor. The proposed magnetometer and angular velocity bias estimator (MAVBE) utilizes a 15-state process model encoding the nonlinear process dynamics for the magnetometer signal subject to angular velocity excursions, while simultaneously estimating nine magnetometer bias parameters and three angular rate sensor bias parameters, within an extended Kalman filter framework. Bias parameter local observability is numerically evaluated. The bias-compensated signals, together with three-axis accelerometer signals, are utilized to estimate bias-compensated magnetic geodetic heading. Performance of the proposed MAVBE method is evaluated in comparison to the widely cited magnetometer-only TWOSTEP method in numerical simulations, laboratory experiments, and full-scale field trials of an instrumented autonomous underwater vehicle in the Chesapeake Bay, Maryland, USA. For the proposed MAVBE, (i) instrument attitude is not required to estimate biases, and the results show that (ii) the biases are locally observable, (iii) the bias estimates converge rapidly to true bias parameters, (iv) only modest instrument excitation is required for bias estimate convergence, and (v) compensation for magnetometer hard-iron and soft-iron biases dramatically improves dynamic heading estimation accuracy.  more » « less
Award ID(s):
1909182 1435818
NSF-PAR ID:
10406229
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Field Robotics
Volume:
2
Issue:
1
ISSN:
2771-3989
Page Range / eLocation ID:
1001 to 1027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article reports an adaptive sensor bias observer and attitude observer operating directly on [Formula: see text] for true-north gyrocompass systems that utilize six-degree-of-freedom inertial measurement units (IMUs) with three-axis accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic vehicles employ attitude estimation systems that employ microelectromechanical system (MEMS) magnetometers, angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited heading accuracy. Present-day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and thus cannot be used to estimate true-north geodetic heading. Relying on magnetic compasses can be problematic for vehicles that operate in environments with magnetic anomalies and those requiring high-accuracy navigation as the limited accuracy ([Formula: see text] error) of magnetic compasses is typically the largest error source in underwater vehicle navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope (FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically estimate the instrument’s time-varying true-north attitude (roll, pitch, and geodetic heading) in real-time while the instrument is subject to a priori unknown rotations. This gyrocompass system is immune to magnetic anomalies and does not require recalibration every time a new payload is added to or removed from the vehicle. Stability proofs for the reported bias and attitude observers, preliminary simulations, and a full-scale vehicle trial are reported that suggest the viability of the true-north gyrocompass system to provide dynamic real-time true-north heading, pitch, and roll utilizing a comparatively low-cost FOG IMU. 
    more » « less
  2. null (Ed.)
    Over the last few decades, Gyro-Free Inertial Measurement Units (GF-IMUs) have been extensively researched to overcome the limitations of gyroscopes. This research presents a Non-coplanar Accelerometer Array (NAA) for estimating angular velocity with non-specific geometric arrangement of four or more triaxial accelerometers with non-coplanarity constraint. The presented proof of non-coplanar spacial arrangement also provides insights into propagation of the sensor noise and construction of the noise covariance matrices. The system noise depends on the singular values of the relative displacement matrix (between the sensors). A dynamical system model with uncorrelated process and measurement noise is proposed where the accelerometer readings are used simultaneously as process and measurement inputs. The angular velocity is estimated using an Extended Kalman Filter (EKF) that discretizes and linearizes the continuous-discrete time dynamical system. The simulations are performed on a Cube-NAA (Cu-NAA) comprising four accelerometers placed at different vertices of a cube.They analyze the estimation error for static and dynamic movement as the distance between the accelerometers (four accelerometers in cube-orientation) is varied. Here, the system noise is observed to decrease inversely with the length of the cube edge as the arrangement is kept identical. Consequently, the simulation results indicate asymptotic decrease in the standard error of estimation with edge length. The experiments are conducted on a Cu-NAA with five reflective optical markers. The reflective markers are visually tracked using Vicon® to construct the ground truth angular velocity. This unique experimental setup, apart from providing three degrees of rotational freedom of movement, also allows for three degrees of spacial translation (linear acceleration of the Cu-NAA in space). The simulation and experimental results indicate better performance of the proposed EKF as compared to one with correlated process and measurement noises. 
    more » « less
  3. The leading difficulty in achieving the contrast necessary to directly image exoplanets and associated structures (e.g., protoplanetary disks) at wavelengths ranging from the visible to the infrared is quasi-static speckles (QSSs). QSSs are hard to distinguish from planets at the necessary level of precision to achieve high contrast. QSSs are the result of hardware aberrations that are not compensated for by the adaptive optics (AO) system; these aberrations are called non-common path aberrations (NCPAs). In 2013, Frazin showed how simultaneous millisecond telemetry from the wavefront sensor (WFS) and a science camera behind a stellar coronagraph can be used as input into a regression scheme that simultaneously and self-consistently estimates NCPAs and the sought-after image of the planetary system (exoplanetimage). When run in a closed-loop configuration, the WFS measures the corrected wavefront, called theAO residual(AOR)wavefront. The physical principle underlying the regression method is rather simple: when an image is formed at the science camera, the AOR modules both the speckles arising from NCPAs as well as the planetary image. Therefore, the AOR can be used as a probe to estimate NCPA and the exoplanet image via regression techniques. The regression approach is made more difficult by the fact that the AOR is not exactly known since it can be estimated only from the WFS telemetry. The simulations in the Part I paper provide results on the joint regression on NCPAs and the exoplanet image from three different methods, calledideal,naïve, andbias-correctedestimators. The ideal estimator is not physically realizable (it is useful as a benchmark for simulation studies), but the other two are. The ideal estimator uses true AOR values (available in simulation studies), but it treats the noise in focal plane images via standard linearized regression. Naïve regression uses the same regression equations as the ideal estimator, except that it substitutes the estimated values of the AOR for true AOR values in the regression formulas, which can result in problematic biases (however, Part I provides an example in which the naïve estimate makes a useful estimate of NCPAs). The bias-corrected estimator treats the errors in AOR estimates, but it requires the probability distribution that governs the errors in AOR estimates. This paper provides the regression equations for ideal, naïve, and bias-corrected estimators, as well as a supporting technical discussion.

     
    more » « less
  4. In this paper, we present the FIU MARG Dataset (FIUMARGDB) of signals from the tri-axial accelerometer, gyroscope, and magnetometer contained in a low-cost miniature magnetic–angular rate–gravity (MARG) sensor module (also known as magnetic inertial measurement unit, MIMU) for the evaluation of MARG orientation estimation algorithms. The dataset contains 30 files resulting from different volunteer subjects executing manipulations of the MARG in areas with and without magnetic distortion. Each file also contains reference (“ground truth”) MARG orientations (as quaternions) determined by an optical motion capture system during the recording of the MARG signals. The creation of FIUMARGDB responds to the increasing need for the objective comparison of the performance of MARG orientation estimation algorithms, using the same inputs (accelerometer, gyroscope, and magnetometer signals) recorded under varied circumstances, as MARG modules hold great promise for human motion tracking applications. This dataset specifically addresses the need to study and manage the degradation of orientation estimates that occur when MARGs operate in regions with known magnetic field distortions. To our knowledge, no other dataset with these characteristics is currently available. FIUMARGDB can be accessed through the URL indicated in the conclusions section. It is our hope that the availability of this dataset will lead to the development of orientation estimation algorithms that are more resilient to magnetic distortions, for the benefit of fields as diverse as human–computer interaction, kinesiology, motor rehabilitation, etc. 
    more » « less
  5. This paper presents a nonlinear finite-time stable attitude estimation scheme for a rigid body with unknown dynamics. Attitude is estimated from a minimum of two linearly independent known vectors measured in the body-fixed frame, and the angular velocity vector is assumed to have a constant bias in addition to measurement errors. Estimated attitude evolves directly on the special Euclidean group SO(3), avoiding any ambiguities. The constant bias in angular velocity measurements is also estimated. The estimation scheme is proven to be almost globally finite time stable in the absence of measurement errors using a Lyapunov analysis. For digital implementation, the estimation scheme is discretized as a geometric integrator. Numerical simulations demonstrate the robustness and convergence capabilities of the estimation scheme. 
    more » « less