skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric Integral Attitude Control on SO(3)
This article proposes a novel integral geometric control attitude tracking scheme, utilizing a coordinate-free representation of attitude on the Lie group of rigid body rotations, SO(3). This scheme exhibits almost global asymptotic stability in tracking a reference attitude profile. The stability and robustness properties of this integral tracking control scheme are shown using Lyapunov stability analysis. A numerical simulation study, utilizing a Lie Group Variational Integrator (LGVI), verifies the stability of this tracking control scheme, as well as its robustness to a disturbance torque. In addition, a numerical comparison study shows the effectiveness of the proposed geometric integral term, when compared to other state-of-the-art attitude controllers. In addition, software-in-the-loop (SITL) simulations show the advantages of utilizing the proposed attitude controller in PX4 autopilot compared to using PX4’s original attitude controller.  more » « less
Award ID(s):
2132799
PAR ID:
10484402
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI, https://www.mdpi.com/2079-9292/11/18/2821
Date Published:
Journal Name:
Electronics
Volume:
11
Issue:
18
ISSN:
2079-9292
Page Range / eLocation ID:
2821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents an attitude tracking control scheme with Hölder continuity and finite-time stability. The first part of this article discusses and compares the features of first-order multivariable Hölder-continuous systems with coupled-scalar sliding-mode systems. The advantages of Hölder-continuous systems over sliding-mode systems are presented from the perspectives of control continuity and noise robustness. Thereafter, a Hölder-continuous second-order differentiator is presented with its stability and robustness properties. This is followed by its use in an attitude tracking control scheme, which is covered in the second part of the article. The proposed tracking control scheme is designed directly on the state-space of rigid-body rotational motion, which is the tangent bundle of the Lie group of 3D rotations. The control scheme design, its stability, and its robustness properties are obtained through Lyapunov stability analyses. The proposed Hölder-continuous design is compared with three comparable sliding-mode designs. Numerical simulations on a simulated CubeSat demonstrate the performance of the proposed control scheme and compare it with the sliding-mode control schemes. The numerical simulations also compare the proposed control scheme with other state-of-the-art sliding-mode control approaches in existing research publications. The comparison results demonstrate that the proposed Hölder-continuous attitude control scheme exhibits lower control efforts and tracking control errors over these sliding-mode control schemes in simulations that incorporate actuator dynamics and measurement uncertainties. 
    more » « less
  2. This article presents an estimation scheme for a rotating rigid body in the presence of unknown disturbance torque and unknown bias in angular velocity measurements. The attitude, angular velocity and disturbance torque are estimated from on-board control inputs, landmark vector measurements, and angular velocity measurements. The estimated attitude evolves directly on the special orthogonal group SO(3) of rigid body rotations. A Lyapunov analysis is given to prove that the proposed estimation scheme is almost globally Lyapunov stable in the absence of measurement noise and dynamic disturbance. The estimation scheme is discretized as a geometric integrator for practical implementation. The geometry-preserving properties of this numerical integrator preserve the Lie group structure of the configuration space, and give long time numerical stability. Numerical simulations demonstrate the stability and robustness properties of the proposed scheme. 
    more » « less
  3. Abstract This paper presents a geometric adaptive position tracking control system for a quadrotor unmanned aerial vehicle. In particular, the attitude control system is designed on the product of the two-dimensional unit sphere and the one-dimensional circle such that the direction of the thrust that is critical for position tracking is controlled independently from the yawing direction that is irrelevant to the position dynamics. Compared against the prior work with coupled attitude controls on the special orthogonal group, the proposed controller prevents large yaw errors from causing an undesirable performance degradation in tracking a position command. Further, the control input is augmented with adaptive control terms to mitigate the effects of disturbances, and it is formulated globally on the spheres to avoid singularities and complexities of local coordinates. The efficacy of the proposed control system is illustrated by both numerical examples and indoor/outdoor flight experiments. 
    more » « less
  4. This paper presents a finite-time stable (FTS) attitude tracking control scheme in discrete time for an unmanned vehicle. The attitude tracking control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of attitude tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous time tracking control system is addressed in this paper through a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model. 
    more » « less
  5. This article addresses the quadrotors’ safety-critical landing control problem with external uncertainties and collision avoidance. A geometrically robust hierarchical control strategy is proposed for an underactuated quadrotor, which consists of a slow outer loop controlling the position and a fast inner loop regulating the attitude. First, an estimation error quantified (EEQ) observer is developed to identify and compensate for the target’s linear acceleration and the translational disturbances, whose estimation error has a nonnegative upper bound. Furthermore, an outer-loop controller is designed by embedding the EEQ observer and control barrier functions (CBFs), in which the negative effects of external uncertainties, collision avoidance, and input saturation are thoroughly considered and effectively attenuated. For the inner-loop subsystem, a geometric controller with a robust integral of the sign of the error (RISE) control structure is developed to achieve disturbances rejection and asymptotic attitude tracking. Based on Lyapunov techniques and the theory of cascade systems, it is rigorously proven that the closed-loop system is uniformly ultimately bounded. Finally, the effectiveness of the proposed control strategy is demonstrated through numerical simulations and hardware experiments. 
    more » « less