skip to main content


Title: Semimajor-axis Jumps as the Activity Trigger in Centaurs and High-perihelion Jupiter-family Comets
Abstract

We present a dynamical study of 39 active Centaurs and 17 high-perihelion (q> 4.5 au) Jupiter-family comets (JFCs) with a focus on investigating recent orbital changes as potential triggers for comet-like activity. We have identified a common feature in the recent dynamical histories of all active Centaurs and JFCs in our sample that is not present in the history of the majority of inactive population members: a sharp decrease in semimajor axis and eccentricity occurring within the past several hundred years prior to observed activity. We define these rapid orbital changes as “a-jumps.” Our results indicate that these orbital reshaping events lead to shorter orbital periods and subsequently greater average per-orbit heating of Centaur nuclei. We suggest that thea-jumps could therefore be a major trigger of cometary activity on Centaurs and JFCs. Our results further imply that analyses of the recent dynamical histories could be used to identify objects that are currently active or may become active soon, where we have identified three such Centaurs with recenta-jumps that should be considered high-priority targets for observational monitoring to search for activity.

 
more » « less
NSF-PAR ID:
10484465
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
960
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L8
Size(s):
["Article No. L8"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the Citizen Science program Active Asteroids and describe discoveries stemming from our ongoing project. Our NASA Partner program is hosted on the Zooniverse online platform and launched on 2021 August 31, with the goal of engaging the community in the search for active asteroids—asteroids with comet-like tails or comae. We also set out to identify other unusual active solar system objects, such as active Centaurs, active quasi-Hilda asteroids (QHAs), and Jupiter-family comets (JFCs). Active objects are rare in large part because they are difficult to identify, so we ask volunteers to assist us in searching for active bodies in our collection of millions of images of known minor planets. We produced these cutout images with our project pipeline that makes use of publicly available Dark Energy Camera data. Since the project launch, roughly 8300 volunteers have scrutinized some 430,000 images to great effect, which we describe in this work. In total, we have identified previously unknown activity on 15 asteroids, plus one Centaur, that were thought to be asteroidal (i.e., inactive). Of the asteroids, we classify four as active QHAs, seven as JFCs, and four as active asteroids, consisting of one main-belt comet (MBC) and three MBC candidates. We also include our findings concerning known active objects that our program facilitated, an unanticipated avenue of scientific discovery. These include discovering activity occurring during an orbital epoch for which objects were not known to be active, and the reclassification of objects based on our dynamical analyses.

     
    more » « less
  2. Abstract

    We report our discovery of cometary activity in the form of a diffuse tail associated with minor planet 2008 QZ44during two previous orbits: 2008 and 2017. This finding was prompted in part byActive Asteroids, ourZooniverse-hosted NASA Partner Citizen Science program. Participants flagged two UT 2017 July 12 Dark Energy Camera images of 2008 QZ44as active. Independently, our team identified activity in nine Canada-France-Hawaii Telescope MegaPrime images from UT 2008 November 20. During both apparitions 2008 QZ44was near its perihelion passage. 2008 QZ44has a Tisserand parameter with respect to Jupiter of 2.821, placing it in the Jupiter-family comet (JFC) class, and our dynamical integrations confirm this classification. JFCs contain primordial material that informs us about solar system evolution, and help us map the present-day volatile distribution. We note that 2008 QZ44has previously been classified as a quasi-Hilda comet candidate.

     
    more » « less
  3. Abstract

    Centaurs are minor solar system bodies with orbits transitioning between those of trans-Neptunian scattered disk objects and Jupiter-family comets (JFCs). 39P/Oterma (39P) is a frequently active centaur that has recently held both centaur and JFC classifications and was observed with the JWST NIRSpec instrument on 2022 July 27 UTC while it was 5.82 au from the Sun. For the first time, CO2gas emission was detected in a centaur, with a production rate ofQCO2= (5.96 ± 0.80) × 1023molecules s−1. This is the lowest detection of CO2of any centaur or comet. CO and H2O were not detected down to constraining upper limits. Derived mixing ratios ofQCO/QCO2≤ 2.03 andQCO2/QH2O≥ 0.60 are consistent with CO2and/or CO outgassing playing large roles in driving the activity, but not water, and show a significant difference between the coma abundances of 29P/Schwassmann–Wachmann 1, another centaur at a similar heliocentric distance, which may be explained by thermal processing of 39P’s surface during its previous JFC orbit. To help contextualize the JWST data we also acquired visible CCD imaging data on two dates in 2022 July (Gemini-North) and September (Lowell Discovery Telescope). Image analysis and photometry based on these data are consistent with a point-source detection and an estimated effective nucleus radius of 39P in the range ofRnuc= 2.21–2.49 km.

     
    more » « less
  4. Abstract

    The dynamical evolution of the solar system is chaotic with a Lyapunov time of only ∼5 Myr for the inner planets. Due to the chaos it is fundamentally impossible to accurately predict the solar system’s orbital evolution beyond ∼50 Myr based on present astronomical observations. We have recently developed a method to overcome the problem by using the geologic record to constrain astronomical solutions in the past. Our resulting optimal astronomical solution (called ZB18a) shows exceptional agreement with the geologic record to ∼58 Ma (Myr ago) and a characteristic resonance transition around 50 Ma. Here we show that ZB18a and integration of Earth’s and Mars’ spin vector based on ZB18a yield reduced variations in Earth’s and Mars’ orbital inclination and Earth’s obliquity (axial tilt) from ∼58 to ∼48 Ma—the latter being consistent with paleoclimate records. The changes in the obliquities have important implications for the climate histories of Earth and Mars. We provide a detailed analysis of solar system frequencies (gandsmodes) and show that the shifts in the variation in Earth’s and Mars’ orbital inclination and obliquity around 48 Ma are associated with the resonance transition and caused by changes in the contributions to the superposition ofsmodes, plusgsmode interactions in the inner solar system. Thegsmode interactions and the resonance transition (consistent with geologic data) are unequivocal manifestations of chaos. Dynamical chaos in the solar system hence not only affects its orbital properties but also the long-term evolution of planetary climate through eccentricity and the link between inclination and axial tilt.

     
    more » « less
  5. Abstract

    Centaurs have orbits between Jupiter and Neptune and are thought to originate from the trans-Neptunian region. Observations of surface properties of Centaurs and comparison with those of trans-Neptunian objects (TNOs) would provide constraints on their origin and evolution. We analyzed imaging data of nine known Centaurs observed by the Hyper Suprime-Cam (HSC) installed on the Subaru Telescope with the g- and i-band filters. Using the data available in the public HSC data archive, as well as those obtained by the HSC Subaru Strategic Program (HSC-SSP) by the end of 2017 June, we obtained the g − i colors of the nine Centaurs. We compared them with those of known TNOs in the HSC-SSP data obtained by T. Terai et al. (2018, PASJ, 70, S40). We found that the color distribution of the nine Centaurs is similar to that of those TNOs with high orbital inclinations, but distinct from those TNOs with low orbital inclinations. We also examined correlations between the colors of these Centaurs and their orbital elements and absolute magnitude. The Centaurs’ colors show a moderate positive correlation with semi-major axis, while no significant correlations between the color and other orbital elements or absolute magnitude were found for these Centaurs. On the other hand, recent studies on Centaurs with larger samples show interesting correlations between their color and absolute magnitude or orbital inclination. We discuss how our data fit in these previous studies, and also discuss implications of these results for their origin and evolution.

     
    more » « less