skip to main content


Title: Tethered spinal cord tension assessed via ultrasound elastography in computational and intraoperative human studies
Abstract Background

Tension in the spinal cord is a trademark of tethered cord syndrome. Unfortunately, existing tests cannot quantify tension across the bulk of the cord, making the diagnostic evaluation of stretch ambiguous. A potential non-destructive metric for spinal cord tension is ultrasound-derived shear wave velocity (SWV). The velocity is sensitive to tissue elasticity and boundary conditions including strain. We use the term Ultrasound Tensography to describe the acoustic evaluation of tension with SWV.

Methods

Our solution Tethered cord Assessment with Ultrasound Tensography (TAUT) was utilized in three sub-studies: finite element simulations, a cadaveric benchtop validation, and a neurosurgical case series. The simulation computed SWV for given tensile forces. The cadaveric model with induced tension validated the SWV-tension relationship. Lastly, SWV was measured intraoperatively in patients diagnosed with tethered cords who underwent treatment (spinal column shortening). The surgery alleviates tension by decreasing the vertebral column length.

Results

Here we observe a strong linear relationship between tension and squared SWV across the preclinical sub-studies. Higher tension induces faster shear waves in the simulation (R2 = 0.984) and cadaveric (R2 = 0.951) models. The SWV decreases in all neurosurgical procedures (p < 0.001). Moreover, TAUT has a c-statistic of 0.962 (0.92-1.00), detecting all tethered cords.

Conclusions

This study presents a physical, clinical metric of spinal cord tension. Strong agreement among computational, cadaveric, and clinical studies demonstrates the utility of ultrasound-induced SWV for quantitative intraoperative feedback. This technology is positioned to enhance tethered cord diagnosis, treatment, and postoperative monitoring as it differentiates stretched from healthy cords.

 
more » « less
NSF-PAR ID:
10484483
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Medicine
Volume:
4
Issue:
1
ISSN:
2730-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    In order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)‐linear accelerator (MR‐linac), the low‐resolution T2‐weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction.

    Purpose

    In this pilot study, we evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on‐board setup MRIs from the MR‐linac for off‐line reconstruction of delivered dose.

    Methods

    Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. Twenty total autosegmentation methods were evaluated in ADMIRE: 1–9) atlas‐based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10–19) autosegmentation using images from a patient's 1–4 prior fractions (individualized patient prior [IPP]) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance (MSD), Hausdorff distance (HD), and Jaccard index (JI). For each metric and OAR, performance was compared to the inter‐observer variability using Dunn's test with control. Methods were compared pairwise using the Steel‐Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high‐performing autosegmentation methods (DL, IPP with RF and 4 fractions [IPP_RF_4], IPP with 1 fraction [IPP_1]), and one low‐performing (PAL with STAPLE and 5 atlases [PAL_ST_5]). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics.

    Results

    DL and IPP methods performed best overall, all significantly outperforming inter‐observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter‐observer variability or from each other. DL was the fastest method (33 s per case) and PAL methods the slowest (3.7–13.8 min per case). Execution time increased with a number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within ± 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314).

    Conclusions

    The autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on‐board T2‐weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end‐to‐end dose accumulation workflow.

     
    more » « less
  2. Background:

    Painful diabetic neuropathy (PDN) is a progressive condition that deprives many patients of quality of life. With limited treatment options available, successful pain management can be difficult to achieve.

    Methods:

    We reviewed results of recent data evaluating high frequency spinal cord stimulation (SCS).

    Results

    from the SENZA-PDN randomized clinical trial (NCT03228420), the largest such trial to date, demonstrated 10-kHz spinal cord stimulation substantially reduced PDN refractory to conventional medical management along with improvements in health-related quality-of-life measures that were sustained over 12 months. These data supported the recent U.S. Food & Drug Administration (FDA) approval for 10-kHz SCS in PDN patients and contributed to the body of evidence on SCS available to health care professionals managing the effects of PDN.

    Conclusion:

    High frequency spinal cord simulation appears to hold promise in treatment of painful diabetic neuropathy. We look forward to future works in the literature that will further elucidate these promising findings.

     
    more » « less
  3. Abstract

    Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter‐1 (GLT‐1), glutamine synthetase (GS), 10‐formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT‐1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT‐1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis. No group has performed a comprehensive immunocytochemical evaluation to quantify the percentage of cells labeled by these markersin vitro, nor compared changes in staining between cortex‐ and spinal cord‐derived cells in naïve and stimulated cultures. Here, we quantified the percentage of cells positively stained for these six markers in astrocyte, microglia, and oligodendrocyte cultures isolated from neonatal rat cortices and spinal cords. Additionally, we incubated the astrocytes with transforming growth factor (TGF)‐β1 or TGF‐β3 to determine if the labeling of these markers is altered by these stimuli. We found that only SOX9 in cortical cultures and ALDH1L1 in spinal cord cultures labeled more than 75% of the cells in naïve and stimulated astrocyte cultures and stained less than 5% of the cells in microglia and oligodendrocyte cultures. Furthermore, significantly more cortical than spinal cord astrocytes stained for GFAP, GLAST, and ALDH1L1 in naïve cultures, whereas significantly more spinal cord than cortical astrocytes stained for GLAST and GS in TGF‐β1‐treated cultures. These findings are important as variability in marker staining may lead to misinterpretation of the astrocyte response in cocultures, migration assays, or engineered disease models.

     
    more » « less
  4. Purpose

    The Radiofrequency (RF)‐induced heating for an active implantable medical device (AIMD) with dual parallel leads is evaluated in this paper. The coupling effects between dual parallel leads are studied via simulations and experiments methods. The global transfer function technique is used to assess the RF‐induced heating for dual‐lead AIMDs inside four human body models.

    Methods

    RF‐induced heating for spinal cord stimulator systems with 60 and 90 cm length leads are studied at three parallel dual‐lead configurations (closely spaced, 8 mm spaced, and 40 mm spaced) and a single‐lead configuration. The global transfer function method is used to develop the AIMD models of different configurations and is used for lead‐tip heating assessments inside human body models.

    Results

    In simulation studies, the peak 1g specific absorption rate/temperatrue rises of dual parallel leads systems is lower than those from the single‐lead system. In experimental American Society for Testing and Materials phantom studies, the temperature rises for the single‐lead AIMD system can be 2.4 times higher than that from dual‐lead AIMD systems. For the spinal cord stimulator systems used in the study, the statistical analysis shows the RF‐induced heating of dual‐lead configurations are also lower than those from the single‐lead configuration inside all four human body models.

    Conclusion

    For the AIMD system in this study, it shows that the coupling effects between the dual parallel leads of AIMD systems can reduce RF‐induced heating. The global transfer function for different spatial distance dual‐lead configurations can potentially provide a method for the RF‐induced heating evaluation for dual‐lead AIMD systems.

     
    more » « less
  5. Abstract

    Charcot‐Marie‐Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl‐tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)‐based models of CMT2D bearing mutations inGARS1and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing aGARS1P724Hmutation and is coupled with significant decreases in acetylated α‐tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α‐tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population‐level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.

     
    more » « less