skip to main content


Title: Vibroscape analysis reveals acoustic niche overlap and plastic alteration of vibratory courtship signals in ground-dwelling wolf spiders
Abstract

To expand the scope of soundscape ecology to encompass substrate-borne vibrations (i.e. vibroscapes), we analyzed the vibroscape of a deciduous forest floor using contact microphone arrays followed by automated processing of large audio datasets. We then focused on vibratory signaling of ground-dwellingSchizocosawolf spiders to test for (i) acoustic niche partitioning and (ii) plastic behavioral responses that might reduce the risk of signal interference from substrate-borne noise and conspecific/heterospecific signaling. Two closely related species -S. stridulansandS. uetzi- showed high acoustic niche overlap across space, time, and dominant frequency. Both species show plastic behavioral responses -S. uetzimales shorten their courtship in higher abundance of substrate-borne noise,S. stridulansmales increased the duration of their vibratory courtship signals in a higher abundance of conspecific signals, andS. stridulansmales decreased vibratory signal complexity in a higher abundance ofS. uetzisignals.

 
more » « less
NSF-PAR ID:
10484495
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
7
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Animal signals experience selection for detectability, which is determined in large part by the signal transmission properties of the habitat. Understanding the ecological context in which communication takes place is therefore critical to understanding selection on the form of communication signals. In order to determine the influence of environmental heterogeneity on signal transmission, we focus on a wolf spider species native to central Florida, Schizocosa floridana, in which males court females using a substrate-borne vibratory song. We test the hypothesis that S. floridana is a substrate specialist by 1) assessing substrate use by females and males in the field, 2) quantifying substrate-specific vibratory signal transmission in the laboratory, and 3) determining substrate-specific mating success in the laboratory. We predict a priori that 1) S. floridana restricts its signaling to oak litter, 2) oak litter best transmits their vibratory signal, and 3) S. floridana mates most readily on oak litter. We find that S. floridana is almost exclusively found on oak litter, which was found to attenuate vibratory courtship signals the least. Spiders mated with equal frequency on oak and pine, but did not mate at all on sand. Additionally, we describe how S. floridana song contains a novel component, chirps, which attenuate more strongly than its other display components on pine and sand, but not on oak, suggesting that the ways in which the environment relaxes restrictions on signal form may be as important as the ways in which it imposes them.

     
    more » « less
  2. Abstract

    Animals communicate using a diversity of signals produced by a wide array of physical structures. Determining how a signal is produced provides key insights into signal evolution. Here, we examine a complex vibratory mating display produced by maleSchizocosa floridanawolf spiders. This display contains three discrete substrate‐borne acoustic components (known as “thumps”, “taps”, and “chirps”), each of which is anecdotally associated with the movement of a different body part (the pedipalps, legs, and abdomen respectively). In order to determine the method of production, we employ a combination of high‐speed video/audio recordings and SEM imaging of possible sound‐producing structures. Previous work has suggested that the “chirp” component is tonal, a signal trait that would be potentially unique in the genus. We measured signal tonality for all courtship components, as well as for courtship components from sixteen otherSchizocosawolf spiders. Our results suggest thatS. floridanaproduces courtship song using a combination of shared (palpal stridulation and foreleg percussion) and novel (abdominal movement) sound production mechanisms. Of particular interest, the “chirp”, which is produced using a novel abdominal production mechanism, is the only known tonal signal with acoustic properties that are unique within the genus. We argue that the potential evolution of a novel sound production mechanism has opened up a new axis of signaling trait space in this species, with important implications for how this signal is likely to function and evolve.

     
    more » « less
  3. Abstract

    Sexual signals are often transmitted through multiple modalities (e.g., visual and chemical) and under selection from both intended and unintended receivers. Each component of a multimodal signal may be more or less conspicuous to receivers, and signals may evolve to take advantage of available private channels. We recently documented percussive substrate-borne vibrations in the Pacific field cricket (Teleogryllus oceanicus), a species that uses airborne acoustic and chemical signals to attract and secure mates. The airborne signals of Hawaiian T. oceanicus are currently undergoing rapid evolution; at least five novel male morphs have arisen in the past 20 years. Nothing is yet known about the newly discovered percussive substrate-borne vibrations, so we ask “how” they are produced, “who” produces them (e.g., population, morph), “when” they produce them (e.g., whether they are plastic), and “why” (e.g., do they play a role in mating). We show that the vibrations are produced exclusively by males during courtship via foreleg drumming. One novel morph, purring, produces quieter airborne songs and is more likely to drum than the ancestral morph. However, drumming behavior is also contextually plastic for some males; when we removed the ability of males to produce airborne song, ancestral males became more likely to drum, whereas two novel morphs were equally likely to drum regardless of their ability to produce song. Opposite our prediction, females were less likely to mate with males who drummed. We discuss why that might be and describe what we can learn about complex signal evolution from this newly discovered behavior.

     
    more » « less
  4. While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal. 
    more » « less
  5. Abstract

    Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality‐specific courtship signaling. We predicted that maleSchizocosa crassipalpata(no ornamentation) rely predominantly on diet‐dependent vibratory signaling for mating success. In contrast, we predicted that maleS. bilineata(black foreleg brushes) rely on diet‐dependent visual signaling. We first tested and corroborated the sister‐species relationship betweenS. crassipalpataandS. bilineatausing phylogenomic scale data. Next, we tested for species‐specific, diet‐dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet‐dependent inS. crassipalpata,while visual ornamentation (brush area) was diet‐dependent inS. bilineata. We then compared the species‐specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results forS. crassipalpata,the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success inS. bilineata,with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species.

     
    more » « less