skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae)
Abstract BackgroundAnalysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. ResultsHere we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), includingGossypium arboreum,Gossypium raimondii, andGossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved inGossypioidesandGossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestralin-cisinteractions. ConclusionsOur findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.  more » « less
Award ID(s):
1829176
PAR ID:
10484546
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
BMC Biology
Volume:
21
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using recently published chromosome‐length genome assemblies of two damselfly species,Ischnura elegansandPlatycnemis pennipes, and two dragonfly species,Pantala flavescensandTanypteryx hageni, we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro‐chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro‐chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro‐chromosome inP. flavescenswas lost through fusion with autosomes. 
    more » « less
  2. Abstract BackgroundThe increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FindingsThe desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. ConclusionsOur results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles. 
    more » « less
  3. Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes ofPoecilia pictahave undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly ofP. pictawith whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on theP. pictaX Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system. 
    more » « less
  4. Mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to result from dysregulated gene expression due to changes in chromatin organization into active and inactive compartments. To test this, we performed genome-wide chromosome conformation analyses in human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) with a haploinsufficient mutation for lamin A/C. Compared with gene-corrected cells, mutant hiPSC-CMs have marked electrophysiological and contractile alterations, with modest gene expression changes. While large-scale changes in chromosomal topology are evident, differences in chromatin compartmentalization are limited to a few hotspots that escape segregation to the nuclear lamina and inactivation during cardiogenesis. These regions exhibit up-regulation of multiple noncardiac genes including CACNA1A, encoding for neuronal P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the electrical alterations. However, chromatin compartment changes do not explain most gene expression alterations in mutant hiPSC-CMs. Thus, global errors in chromosomal compartmentation are not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency. 
    more » « less
  5. SUMMARY Aegilopsspecies represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships amongAegilopsspecies or betweenAegilopsand wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D‐specific fluorescencein situhybridization (FISH) probes by selecting D‐specific oligonucleotides based on the reference genome of Chinese Spring. The oligo‐based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions ofAe. tauschiifrom different origins led us to identify two novel translocations: a reciprocal 3D‐7D translocation in two accessions and a complex 4D‐5D‐7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverseAegilopsspecies. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified inAegilops umbellulata,Aegilops markgrafii, andAegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding. 
    more » « less