skip to main content


This content will become publicly available on October 24, 2024

Title: A computational and spectroscopic study of MgCCH (X 2 Σ + ): towards characterizing MgCCH +
New computational and experimental studies have been carried out for the MgCCH radical in its X2Σ+ state. Coupled cluster theory with single, double, and perturbative triples, CCSD(T), was used in conjunction with post-CCSD(T) and scalar relativistic additive corrections to compute vibrational quartic force fields for this molecule. From the quartic force fields, higher-order spectroscopic properties, including rotational constants, were obtained. In tandem, the five lowest energy rotational transitions for MgCCH, N = 1→0 through N = 5→4, were measured for the first time using Fourier transform microwave/millimeter wave methods in the frequency range 9 -50 GHz. The radical was created in the Discharge Assisted Laser Ablation Source (DALAS) developed in the Ziurys group. A combined fit of these data with previous millimeter direct absorption measurements have yielded the most accurate rotational constants for MgCCH to date. The computed principle rotational constant lies within 1.51-1.65 MHz of the experimental one, validating the computational approach. High-level theory was then applied to produce accurate rovibrational spectroscopic constants for MgCCH+, including a rotational constant of B0 = 5354.5–5359.5 MHz.. These new predictions will further the experimental study of MgCCH+, and aid in the low-temperature characterization of MgCCH, detected towards the circumstellar shell of IRC+10216, a carbon-rich star.  more » « less
Award ID(s):
2154121
NSF-PAR ID:
10484552
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Molecular Physics
ISSN:
0026-8976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The millimeter-wave rotational spectrum of ketene (H2C=C=O) has been collected and analyzed from 130 to 750 GHz, providing highly precise spectroscopic constants from a sextic, S-reduced Hamiltonian in the Ir representation. The chemical synthesis of deuteriated samples allowed spectroscopic measurements of five previously unstudied ketene isotopologues. Combined with previous work, these data provide a new, highly precise, and accurate semi-experimental (reSE) structure for ketene from 32 independent moments of inertia. This reSE structure was determined with the experimental rotational constants of each available isotopologue, together with computed vibration–rotation interaction and electron-mass distribution corrections from coupled-cluster calculations with single, double, and perturbative triple excitations [CCSD(T)/cc-pCVTZ]. The 2σ uncertainties of the reSE parameters are ≤0.0007 Å and 0.014° for the bond distances and angle, respectively. Only S-reduced spectroscopic constants were used in the structure determination due to a breakdown in the A-reduction of the Hamiltonian for the highly prolate ketene species. All four reSE structural parameters agree with the “best theoretical estimate” (BTE) values, which are derived from a high-level computed re structure [CCSD(T)/cc-pCV6Z] with corrections for the use of a finite basis set, the incomplete treatment of electron correlation, relativistic effects, and the diagonal Born–Oppenheimer breakdown. In each case, the computed value of the geometric parameter lies within the statistical experimental uncertainty (2σ) of the corresponding semi-experimental coordinate. The discrepancies between the BTE structure and the reSE structure are 0.0003, 0.0000, and 0.0004 Å for rC–C, rC–H, and rC–O, respectively, and 0.009° for θC–C–H. 
    more » « less
  2. Abstract

    A hybrid quartic force field approach produces the same accuracies as non‐hybrid methods but for less than one quarter of the computational time. This method utilizes explicitly correlated coupled cluster theory at the singles and doubles level inclusive of perturbative triples (CCSD(T)‐F12b) in conjunction with a triple‐ basis set, core electron correlation, and scalar relativity for the harmonic terms and CCSD(T)‐F12b with a valence double‐ basis set for the cubic and quartic terms. There is no sacrifice in the prediction of fundamental anharmonic vibrational frequencies or vibrationally‐averaged rotational constants as compared to experiment, but the time saved is notable. Other hybrid methods are examined involving different sizes of basis sets and composite terms included or excluded. Not one is more accurate; only one is faster. F12 (also called F12c) is tested as well, but it has an increase in computational time for no increase in accuracy. As such, this work reports a hybrid and composite approach (F12‐TcCR+DZ) in the computation of rovibrational spectral data which can be applied to the observation of novel molecules in the gas phase in the laboratory and potentially even in astrophysical environments.

     
    more » « less
  3. New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the A˜2B1 and B˜2A1 states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the ν1 and ν3 frequencies of the B˜2B2 state of the water cation to approximately 2409.3 cm−1 and 1785.7 cm−1, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm−1 for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy. 
    more » « less
  4. The millimeter/sub-millimeter spectrum of the KO radical has been recorded in the frequency range 90–534 GHz using direct absorption methods. The radical was synthesized by reacting potassium vapor, produced with a Broida-type oven, with either N2O or O2 mixed in argon carrier gas. Twenty-seven rotational transitions of KO were measured, each exhibiting a doublet structure with a relatively small splitting (~100–200 MHz) that increased noticeably with frequency. A perturbation was apparent in the rotational lines at energies above ~120 cm-1, which was more prominent in one doublet component. The data were successfully fit with a Hund’s case (c) Hamiltonian, assuming that spectra arise from a 2Pi state, and rotational and effective lambda-doubling constants were determined. Higher order centrifugal distortion terms were needed to account for the perturbation. The spectra could also be fit as a 2S+ ground state, but less successfully, and the resulting rotational constant of B = 8235.4 MHz disagreed significantly with that predicted by theory. On the basis of the experimental data, the ground electronic state of KO has been assigned as 2Pi, although the 2S+ assignment cannot be entirely ruled out. 
    more » « less
  5. A combined total of 25 vibrational states of 2-chloropyridine (C5H4NCl, la = 3.07 D, lb = 1.70 D), including states for both chlorine isotopologues, have been least-squares fit to sextic, A-reduced Hamiltonians with low error (<0.05 MHz). In total, over 22,500 transition frequencies were measured in the 135–375 GHz frequency region. The technique of fixing undeterminable distortion constants to the corresponding values of the ground vibrational state for fundamental states and to extrapolated values for overtone and combination states was employed. The experimentally determined rotational, centrifugal distortion, and vibration-rotation interaction constants are reasonably well-predicted by computational methods (B3LYP/6-311+G(2d,p)). For the chlorine isotopologues, the changes in rotational and quartic distortion constants upon vibrational excitation are quite similar, indicating that it is possible to estimate the constants of a lower-abundance isotopologue’s excited vibrational state using the change in constant observed in the higher-abundance isotopologue. The changes in rotational and quartic distortion constants upon vibrational excitation are also quite similar between analogous vibrational states of 2-chloropyridine and chloropyrazine, despite their differences in molecular composition. 
    more » « less