Abstract A dual‐layer interphase that consists of an in‐situ‐formed lithium carboxylate organic layer and a thin BF3‐doped monolayer Ti3C2MXene on Li metal is reported. The honeycomb‐structured organic layer increases the wetting of electrolyte, leading to a thin solid electrolyte interface (SEI). While the BF3‐doped monolayer MXene provides abundant active sites for lithium homogeneous nucleation and growth, resulting in about 50% reduced thickness of inorganic‐rich components among the SEI layer. A low overpotential of less than 30 mV over 1000 h cycling in symmetric cells is received. The functional BF3 groups, along with the excellent electronic conductivity and smooth surface of the MXene, greatly reduce the lithium plating/stripping energy barrier, enabling a dendrite‐free lithium‐metal anode. The battery with this dual‐layer coated lithium metal as the anode displays greatly improved electrochemical performance. A high capacity‐retention of 175.4 mAh g−1at 1.0 C is achieved after 350 cycles. In a pouch cell with a capacity of 475 mAh, the battery still exhibits a high discharge capacity of 165.6 mAh g−1with a capacity retention of 90.2% after 200 cycles. In contrast to the fast capacity decay of pure Li metal, the battery using NCA as the cathode also displays excellent capacity retention in both coin and pouch cells. The dual‐layer modified surface provides an effective approach in stabilizing the Li‐metal anode.
more »
« less
Single‐Step Deformation Processing of Ultrathin Lithium Foil and Strip
Abstract Next‐generation, high‐efficiency energy storage and conversion systems require development of lithium metal batteries. But the high cost of production and constraints on thickness of lithium (anode) foils continue to limit adoption for integration into battery cell architectures. Here, a novel lithium anode manufacturing solution is demonstrated – single‐step production of ultrathin gauge foil formats directly from solid ingot. Hybrid cutting‐based deformation processes, involving large plastic strains and strain rates, produce foil to sub‐10 µm thickness, with surface quality even superior to present Li anode processing routes. Energy analysis shows the single‐stage processing is ≈50% more efficient than conventional processing by extrusion‐rolling. Through in situ force measurements and high‐speed imaging of the cutting it also characterize – for the first time – the flow stress of Li to strain rates of 800 sec−1, revealing a power‐law relationship. The results present a paradigm shift in manufacturing and integration of solid lithium anodes for energy applications.
more »
« less
- PAR ID:
- 10484571
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract All‐solid‐state batteries with metallic lithium (LiBCC) anode and solid electrolyte (SE) are under active development. However, an unstable SE/LiBCCinterface due to electrochemical and mechanical instabilities hinders their operation. Herein, an ultra‐thin nanoporous mixed ionic and electronic conductor (MIEC) interlayer (≈3.25 µm), which regulates LiBCCdeposition and stripping, serving as a 3D scaffold for Li0ad‐atom formation, LiBCCnucleation, and long‐range transport of ions and electrons at SE/LiBCCinterface is demonstrated. Consisting of lithium silicide and carbon nanotubes, the MIEC interlayer is thermodynamically stable against LiBCCand highly lithiophilic. Moreover, its nanopores (<100 nm) confine the deposited LiBCCto the size regime where LiBCCexhibits “smaller is much softer” size‐dependent plasticity governed by diffusive deformation mechanisms. The LiBCCthus remains soft enough not to mechanically penetrate SE in contact. Upon further plating, LiBCCgrows in between the current collector and the MIEC interlayer, not directly contacting the SE. As a result, a full‐cell having Li3.75Si‐CNT/LiBCCfoil as an anode and LiNi0.8Co0.1Mn0.1O2as a cathode displays a high specific capacity of 207.8 mAh g−1, 92.0% initial Coulombic efficiency, 88.9% capacity retention after 200 cycles (Coulombic efficiency reaches 99.9% after tens of cycles), and excellent rate capability (76% at 5 C).more » « less
-
Abstract Solid‐state batteries with alloy‐type negative electrodes can feature enhanced energy density and safety compared to conventional Li‐ion batteries. However, diffusional Li trapping within Li alloys often causes low initial Coulombic efficiency and leads to capacity loss with cycling. Here, a general roll‐pressing prelithiation method compatible with a variety of alloy‐type negative electrodes (silicon, aluminum, tin, and multi‐phase alloys) is introduced, which is shown to improve performance in solid‐state batteries. By warm‐rolling lithium foil of controlled thickness with various alloy‐type electrodes, both slurry‐cast and foil‐type electrodes can be uniformly prelithiated via direct chemical reaction. The prelithiated electrodes exhibit enhanced specific capacity and extended cycle life in batteries with Li6PS5Cl solid‐state electrolyte. Prelithiated multi‐phase foil electrodes with a tailored interface are shown to exhibit superior cycling stability down to 2 MPa stack pressure. This prelithiation technique offers a pathway to overcome intrinsic challenges in alloy anodes for solid‐state batteries.more » « less
-
Abstract A thin solid electrolyte with a high Li+conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg2+stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li1.2Mg0.1Zr1.9(PO4)3(LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr2(PO4)3.7Li and6Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO4cell. The enhanced performance of these cells enabled by the Li1.2Mg0.1Zr1.9(PO4)3solid electrolyte is stable upon repeated charge/discharge cycling.more » « less
-
Abstract The commercialization of high‐energy Li‐metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two‐step electrochemical process, where Cu‐Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm−2and under a high current density of 10 mA cm−2. This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X‐ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.more » « less
An official website of the United States government
