Abstract Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.
more »
« less
Experimental determination of quartz solubility in H2O-CaCl2 solutions at 600–900 °C and 0.6–1.4 GPa
Abstract Fluid-mediated calcium metasomatism is often associated with strong silica mobility and the presence of chlorides in solution. To help quantify mass transfer at lower crustal and upper mantle conditions, we measured quartz solubility in H2O-CaCl2 solutions at 0.6–1.4 GPa, 600–900 °C, and salt concentrations to 50 mol%. Solubility was determined by weight loss of single-crystals using hydrothermal piston-cylinder methods. All experiments were conducted at salinity lower than salt saturation. Quartz solubility declines exponentially with added CaCl2 at all conditions investigated, with no evidence for complexing between silica and Ca. The decline in solubility is similar to that in H2O-CO2 but substantially greater than that in H2O-NaCl at the same pressure and temperature. At each temperature, quartz solubility at low salinity (XCaCl2 < 0.1) depends strongly on pressure, whereas at higher XCaCl2 it is nearly pressure independent. This behavior is consistent with a transition from an aqueous solvent to a molten salt near XCaCl2 ~0.1. The solubility data were used to develop a thermodynamic model of H2O-CaCl2 fluids. Assuming ideal molten-salt behavior and utilizing previous models for polymerization of hydrous silica, we derived values for the activity of H2O (aH2O), and for the CaCl2 dissociation factor (α), which may vary from 0 (fully associated) to 2 (fully dissociated). The model accurately reproduces our data along with those of previous work and implies that, at conditions of this study, CaCl2 is largely associated (<0.2) at H2O density <0.85 g/cm3. Dissociation rises isothermally with increasing density, reaching ~1.4 at 600 °C, 1.4 GPa. The variation in silica molality with aH2O in H2O-CaCl2 is nearly identical to that in H2O-CO2 solutions at 800 °C and 1.0 GPa, consistent with the absence of Ca-silicate complexing. The results suggest that the ionization state of the salt solution is an important determinant of aH2O, and that H2O-CaCl2 fluids exhibit nearly ideal molecular mixing over a wider range of conditions than implied by previous modeling. The new data help interpret natural examples of large-scale Ca-metasomatism in a wide range of lower crustal and upper mantle settings.
more »
« less
- Award ID(s):
- 2124650
- PAR ID:
- 10484770
- Publisher / Repository:
- Mineralogical Society of America
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 108
- Issue:
- 10
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 1852 to 1861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The solubility of CO2 in hydrous basaltic andesite was examined in fO2-controlled experiments at a temperature of 1125 °C and pressures between 310–1200 MPa. Concentrations of dissolved H2O and CO2 in experimental glasses were determined by ion microprobe calibrated on a subset of run glasses analyzed by high-temperature vacuum manometry. Assuming that the solubility of H2O in mafic melt is relatively well known, estimates of XH2Ofluid and PH2Ofluid in the saturating fluid were modeled, and by difference, values for XCO2fluid and PCO2fluid were obtained (XCO2 ~0.5–0.9); fCO2 could be then calculated from the fluid composition, temperature, and pressure. Dissolved H2O over a range of 2.3–5.5 wt% had no unequivocal influence on the dissolution of CO2 at the pressures and fluid compositions examined. For these H2O concentrations, dissolved CO2 increases with fCO2 following an empirical power-law relation: dissolved CO2 (ppmw) = 14.9−3.5+4.5[fCO2 (MPa)]0.7±0.03. The highest-pressure results plot farthest from this equation but are within its 1 standard-error uncertainty envelope. We compare our experimental data with three recent CO2-H2O solubility models: Papale et al. (2006); Iacono-Marziano et al. (2012); and Ghiorso and Gualda (2015). The Papale et al. (2006) and Iacono-Marizano et al. (2012) models give similar results, both over-predicting the solubility of CO2 in a melt of the Pavlof basaltic andesite composition across the fCO2 range, whereas the Ghiorso and Gualda (2015) model under-predicts CO2 solubility. All three solubility models would indicate a strong enhancement of CO2 solubility with increasing dissolved H2O not apparent in our results. We also examine our results in the context of previous high-pressure CO2 solubility experiments on basaltic melts. Dissolved CO2 correlates positively with mole fraction (Na+K+Ca)/Al across a compositional spectrum of trachybasalt-alkali basalt-tholeiite-icelandite-basaltic andesite. Shortcomings of current solubility models for a widespread arc magma type indicate that our understanding of degassing in the deep crust and uppermost mantle remains semi-quantitative. Experimental studies systematically varying concentrations of melt components (Mg, Ca, Na, K, Al, Si) may be necessary to identify solubility reactions, quantify their equilibrium constants, and thereby build an accurate and generally applicable solubility model.more » « less
-
Abstract Stable and inert under most conditions, zircon can be dissolved and precipitated by aqueous fluids in the upper crust. Geochemical models using currently available thermodynamic properties for Zr aqueous species at 0.2 GPa predict that zircon solubility increases with temperature from 400 to 900°C in fluids saturated with quartz or baddeleyite. Zircon solubility is low in near‐neutral pH fluids and enhanced in acidic and alkaline fluids. Adding NaOH and to a lesser extent NaF to the solution significantly increases the solution pH values and Zr concentrations at zircon saturation. Modeled Zr concentrations are often orders of magnitude different from zircon solubilities measured experimentally under similar conditions. Metamict (amorphous) ZrSiO4is more soluble than crystalline zircon and is replaced through a coupled dissolution‐precipitation process. Reaction path kinetics models were constructed to simulate experiments described in the literature and extract rate constants for replacement of metamict ZrSiO4. Replacement is rate limited by zircon precipitation and is nearly complete after 1 week when fluid is present at 600°C, with the rate of replacement increasing with temperature. In a closed system, hydrothermal zircon may form by replacement of radiation‐damaged zircon but not fully crystalline zircon. Replacement of metamict ZrSiO4forms characteristic porosity. Geochemical models identify the conditions that promote zircon solubility, metamict ZrSiO4replacement, and the formation of hydrothermal zircon, and provide constraints on the interpretation of zircon U‐Pb dates of hydrothermal events.more » « less
-
Deep fluids are important for the evolution and properties of the lower continental and arc crust in tectonically active settings. They comprise four components: H 2 O, nonpolar gases, salts, and rock-derived solutes. Contrasting behavior of H 2 O-gas and H 2 O-salt mixtures yields immiscibility and potential separation of phases with different chemical properties. Equilibrium thermodynamic modeling of fluid-rock interaction using simple ionic species known from shallow-crustal systems yields solutions too dilute to be consistent with experiments and resistivity surveys, especially if CO 2 is added. Therefore, additional species must be present, and H 2 O-salt solutions likely explain much of the evidence for fluid action in high-pressure settings. At low salinity, H 2 O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as polymerized clusters. Addition of salts changes solubility patterns, but aluminosilicate contents may remain high. Fluids with X salt = 0.05 to 0.4 in equilibrium with model crustal rocks have bulk conductivities of 10 −1.5 to 100 S/m at porosity of 0.001. Such fluids are consistent with observed conductivity anomalies and are capable of the mass transfer seen in metamorphic rocks exhumed from the lower crust.more » « less
-
Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes.more » « less
An official website of the United States government

